找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[復(fù)制鏈接]
樓主: Autonomous
21#
發(fā)表于 2025-3-25 06:08:14 | 只看該作者
Convergence to a Semimartingale,limit process . also is a semimartingale; not quite an arbitrary one, though: since the method is based here on convergence of martingales and on the relations between . and its characteristics, we need these characteristics to indeed characterize the distribution. ?(.)of . So, in most of the chapte
22#
發(fā)表于 2025-3-25 08:28:19 | 只看該作者
Hellinger Processes, Absolute Continuity and Singularity of Measures,years later, Hajek [80] and Feldman [53] proved a similar alternative for Gaussian measures, and several authors gave effective criteria in terms of the covariance functions or spectral quantities, for the laws of two Gaussian processes.
23#
發(fā)表于 2025-3-25 12:02:18 | 只看該作者
Martingale Problems and Changes of Measures,compute these finite-dimensional distributions, except for PII. On the other hand, many usual processes are semimartingales; and a natural tool has emerged in Chapter II for studying them, namely their characteristics: at least, they are often easy to compute.
24#
發(fā)表于 2025-3-25 16:28:21 | 只看該作者
Convergence of Processes with Independent Increments,firstly, the prelimiting processes, as well of course as the limiting process, have independent increments; secondly, only the limiting process has independent increments; thirdly, the limiting process itself belongs to some rather broad class of semi-martingales.
25#
發(fā)表于 2025-3-25 23:39:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:41:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:38:49 | 只看該作者
Book 19871st editionnd stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exp
28#
發(fā)表于 2025-3-26 10:56:43 | 只看該作者
29#
發(fā)表于 2025-3-26 16:31:37 | 只看該作者
30#
發(fā)表于 2025-3-26 17:49:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵定县| 义乌市| 克山县| 札达县| 兰州市| 九江县| 西林县| 鄂托克旗| 龙里县| 安阳县| 兴宁市| 江川县| 鄂州市| 红原县| 白玉县| 苍溪县| 吴堡县| 晋宁县| 新乐市| 酉阳| 大名县| 阿克苏市| 集安市| 浮山县| 通州区| 墨竹工卡县| 满洲里市| 拜城县| 青龙| 临澧县| 云霄县| 齐河县| 汾西县| 融水| 凤冈县| 山东省| 翼城县| 台安县| 高尔夫| 水城县| 乌鲁木齐市|