找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[復(fù)制鏈接]
查看: 43199|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:24:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Limit Theorems for Stochastic Processes
編輯Jean Jacod,Albert N. Shiryaev
視頻videohttp://file.papertrans.cn/587/586169/586169.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Limit Theorems for Stochastic Processes;  Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting
描述Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to gradua
出版日期Book 19871st edition
關(guān)鍵詞Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
版次1
doihttps://doi.org/10.1007/978-3-662-02514-7
isbn_ebook978-3-662-02514-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Limit Theorems for Stochastic Processes影響因子(影響力)




書目名稱Limit Theorems for Stochastic Processes影響因子(影響力)學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes網(wǎng)絡(luò)公開度




書目名稱Limit Theorems for Stochastic Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes被引頻次




書目名稱Limit Theorems for Stochastic Processes被引頻次學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes年度引用




書目名稱Limit Theorems for Stochastic Processes年度引用學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes讀者反饋




書目名稱Limit Theorems for Stochastic Processes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:41 | 只看該作者
https://doi.org/10.1007/978-3-662-02514-7Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
板凳
發(fā)表于 2025-3-22 04:20:41 | 只看該作者
The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals,The “General Theory of Stochastic Processes”, in spite of its name, encompasses the rather restrictive subject of stochastic processes indexed by ?.. But, within this framework, it expounds deep properties related to the order structure of ?., and martingales play a central r?le.
地板
發(fā)表于 2025-3-22 05:33:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:22:01 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:46 | 只看該作者
Limit Theorems, Density Processes and Contiguity,Let us roughly describe the problems which will retain our attention in this last chapter.
7#
發(fā)表于 2025-3-22 19:33:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:48:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:52 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 安吉县| 饶河县| 商丘市| 乌拉特后旗| 衡南县| 台安县| 昭苏县| 濮阳市| 乳源| 洪泽县| 徐汇区| 郸城县| 蓬安县| 阳朔县| 衡东县| 卢湾区| 育儿| 丰宁| 富源县| 古丈县| 托克托县| 纳雍县| 桦川县| 霍山县| 松江区| 思南县| 新巴尔虎右旗| 沾化县| 扎鲁特旗| 临桂县| 仲巴县| 盐亭县| 武夷山市| 积石山| 出国| 土默特右旗| 阳山县| 铜川市| 沙田区| 营口市|