找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[復(fù)制鏈接]
查看: 43195|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:24:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Limit Theorems for Stochastic Processes
編輯Jean Jacod,Albert N. Shiryaev
視頻videohttp://file.papertrans.cn/587/586169/586169.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Limit Theorems for Stochastic Processes;  Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting
描述Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to gradua
出版日期Book 19871st edition
關(guān)鍵詞Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
版次1
doihttps://doi.org/10.1007/978-3-662-02514-7
isbn_ebook978-3-662-02514-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Limit Theorems for Stochastic Processes影響因子(影響力)




書目名稱Limit Theorems for Stochastic Processes影響因子(影響力)學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes網(wǎng)絡(luò)公開度




書目名稱Limit Theorems for Stochastic Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes被引頻次




書目名稱Limit Theorems for Stochastic Processes被引頻次學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes年度引用




書目名稱Limit Theorems for Stochastic Processes年度引用學(xué)科排名




書目名稱Limit Theorems for Stochastic Processes讀者反饋




書目名稱Limit Theorems for Stochastic Processes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:41 | 只看該作者
https://doi.org/10.1007/978-3-662-02514-7Martingal; Martingale; Semimartingal; Semimartingale; Variation; diffusion process; statistics; stochastic
板凳
發(fā)表于 2025-3-22 04:20:41 | 只看該作者
The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals,The “General Theory of Stochastic Processes”, in spite of its name, encompasses the rather restrictive subject of stochastic processes indexed by ?.. But, within this framework, it expounds deep properties related to the order structure of ?., and martingales play a central r?le.
地板
發(fā)表于 2025-3-22 05:33:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:22:01 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:46 | 只看該作者
Limit Theorems, Density Processes and Contiguity,Let us roughly describe the problems which will retain our attention in this last chapter.
7#
發(fā)表于 2025-3-22 19:33:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:48:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:52 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
策勒县| 南充市| 盐源县| 南皮县| 塔城市| 九江县| 晋城| 桃源县| 日土县| 福建省| 茌平县| 五大连池市| 牙克石市| 罗田县| 上林县| 岑溪市| 古交市| 香港 | 涟水县| 郁南县| 新乡县| 扎兰屯市| 长兴县| 浦江县| 香港| 玛曲县| 胶南市| 安国市| 蒙城县| 嘉鱼县| 宝兴县| 塘沽区| 湖南省| 林芝县| 克拉玛依市| 胶州市| 闽清县| 依兰县| 新昌县| 正定县| 娱乐|