找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lehrerprofessionalit?t und die Qualit?t von Mathematikunterricht; Quantitative Studien Michael Besser Book 2014 Springer Fachmedien Wiesbad

[復(fù)制鏈接]
樓主: IU421
11#
發(fā)表于 2025-3-23 12:13:45 | 只看該作者
12#
發(fā)表于 2025-3-23 17:34:00 | 只看該作者
Michael Besserdvent of Big Data in the healthcare arena, such that real-time data are now available to assist many clinical decisions. Real World Data (RWD) from hospital information system structured numerical data and unstructured text data, and it is imperative that phenotyping reproducibly extracts patients w
13#
發(fā)表于 2025-3-23 19:57:05 | 只看該作者
14#
發(fā)表于 2025-3-24 01:47:14 | 只看該作者
Michael Besserl in person is limited in Peru. The objective of the research was to evaluate the influence of a telehealth intervention on the knowledge of danger signs in pregnancy, childbirth and postpartum in pregnant women during the health emergency due to COVID-19. A quasi-experimental research was carried o
15#
發(fā)表于 2025-3-24 04:35:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:26 | 只看該作者
Michael Besserto help doctors and nurses save the life of a newborn whose respiratory circulation is unstable immediately after birth. Workshops are held throughout Japan consisting of lectures, scenario training, and review in support of this goal. In the NCPR workshop, it is recommended to review student activi
17#
發(fā)表于 2025-3-24 12:00:07 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:26 | 只看該作者
Michael Bessereting risk from stroke survival data, which enables to identify several types of events over the follow-up time for each patient affected by stroke. We explore the possibilities of recovery or death from stroke complications by exploring medical data of the neurology department. Our main interest is
19#
發(fā)表于 2025-3-24 20:41:46 | 只看該作者
Michael Besserment and prediction. Deep neural networks (DNNs) are appealing for survival analysis because of their non-linear nature. However, DNNs are often described as “black box” models because they are hard or practically impossible to explain. In this study, we propose an explainable deep network framework
20#
發(fā)表于 2025-3-25 01:45:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳普湖县| 武定县| 随州市| 建水县| 齐齐哈尔市| 龙门县| 浠水县| 石家庄市| 焉耆| 海晏县| 英超| 上蔡县| 格尔木市| 如东县| 历史| 彭水| 禄丰县| 宜丰县| 微博| 云阳县| 余姚市| 潼关县| 镇雄县| 东至县| 安西县| 南康市| 治多县| 滁州市| 稻城县| 阜平县| 宜丰县| 双牌县| 大洼县| 大余县| 武城县| 宜兰县| 祁门县| 赞皇县| 五常市| 建瓯市| 辽阳县|