找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Malnutrition
41#
發(fā)表于 2025-3-28 16:22:00 | 只看該作者
42#
發(fā)表于 2025-3-28 19:39:29 | 只看該作者
Józef H. Przytycki,Rhea Palak Bakshi,Dionne Ibarra,Gabriel Montoya-Vega,Deborah Weeksexes and saturation of dangling bonds as a result, has contributed to a great interest in the hydrogen passivation process. From a technological point of view, the hydrogen passivation plays an important role both at the growth and the processing phases of the semiconductor bulk material. From a fun
43#
發(fā)表于 2025-3-29 02:12:56 | 只看該作者
44#
發(fā)表于 2025-3-29 06:07:49 | 只看該作者
45#
發(fā)表于 2025-3-29 08:48:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:29:14 | 只看該作者
Spin Structure and the Framing Skein Module of Links in 3-Manifolds,h background information on non-separating spheres, Dehn homeomorphisms, and mapping class groups of 3-manifolds. The main tools used in the proof are based on Darryl McCullough’s work on the mapping class groups of 3-manifolds and spin structures. We then relate these results to the theory of skein modules.
47#
發(fā)表于 2025-3-29 16:25:34 | 只看該作者
The Witten-Reshetikhin-Turaev Invariants of 3-Manifolds,y. In this lecture, we focus on W. B. Raymond Lickorish’s Kauffman bracket skein theoretic approach to the invariants. In the last section of this lecture, we introduce a skein module described by Justin Roberts that incorporates the Jones-Wenzl idempotents and has close connections to the (2?+?1)-TQFT and WRT invariants.
48#
發(fā)表于 2025-3-29 22:25:01 | 只看該作者
Gram Determinants of Type , and Type ,hin-Turaev invariant of 3-manifolds. We then discuss the Gram determinant of type .b where the closure is taken in a M?bius band. We state some results that support the closed formula for this Gram determinant conjectured by Q. Chen in 2009.
49#
發(fā)表于 2025-3-30 03:23:35 | 只看該作者
Khovanov Homology: A Categorification of the Jones Polynomial,taining more information, and having a richer algebraic structure. One of the spectacular applications of Khovanov homology is that it detects the unknot. In this lecture, we present an elementary exposition of Khovanov homology following the construction by Oleg Viro.
50#
發(fā)表于 2025-3-30 05:56:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金平| 福州市| 区。| 宁河县| 鹿泉市| 修文县| 安庆市| 公安县| 三原县| 那曲县| 夏河县| 凯里市| 奈曼旗| 扎囊县| 广汉市| 田林县| 绥宁县| 崇义县| 汾西县| 修文县| 高尔夫| 龙州县| 房山区| 沙洋县| 神池县| 佛山市| 乐亭县| 台山市| 高阳县| 白山市| 昭平县| 西充县| 定兴县| 卢湾区| 利辛县| 平乐县| 广州市| 昌宁县| 天峻县| 德令哈市| 会泽县|