找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Malnutrition
11#
發(fā)表于 2025-3-23 10:40:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:17 | 只看該作者
History of Knot Theory from Gauss to Jones,stance called ether. At this time, creating a table of the elements was of significant importance to the scientific community, and this theory encouraged Tait to work on the knot classification problem. In this lecture, the origins of knot theory are examined, taking as a starting point the developm
13#
發(fā)表于 2025-3-23 21:03:09 | 只看該作者
From Fox 3-Coloring to the Yang-Baxter Operator and Its Homology,ion into quandle invariants. Here we also describe the Wirtinger’s and Dehn’s presentations of the fundamental group of the link complement and their relation to Fox colorings. The second part of the lecture describes how the idea of Fox colorings can develop into the sophisticated notion of Yang-Ba
14#
發(fā)表于 2025-3-23 23:25:42 | 只看該作者
Goeritz and Seifert Matrices,the checkerboard coloring of a link diagram and the second using an oriented surface bounded by a link. We discuss several link invariants coming from the matrix including the determinant, the signature, the Alexander-Conway polynomial, and the Tristram-Levine signature.
15#
發(fā)表于 2025-3-24 03:18:32 | 只看該作者
The Jones Polynomial and Kauffman Bracket Polynomial,s lecture, we describe basic properties of these polynomials including mysterious relations with Fox 3??coloring. We also discuss Montesinos-Nakanishi 3??move conjecture and its solution using the Burnside group of link. We end by discussing the Nakanishi 4-move conjecture, from 1979.
16#
發(fā)表于 2025-3-24 10:29:53 | 只看該作者
Variations on Catalan Connections and the Children Pairing Game,ith a simple interpretation of Catalan numbers with a topological flavor and presents a proof, motivated by the theory of skein modules, but which is very elementary and looks like a child’s game. We also discuss the lattice path and Dyck path interpretation of Catalan numbers (including Désiré Andr
17#
發(fā)表于 2025-3-24 11:56:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:55 | 只看該作者
The Kauffman Bracket Skein Module and Algebra of Surface I-Bundles,ter varieties, cluster algebras, and quantum Teichmüller spaces. In this lecture we explore some of these connections and discuss the structure of the Kauffman bracket skein algebras of several thickened surfaces.
19#
發(fā)表于 2025-3-24 21:36:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:24:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 鹤庆县| 栾城县| 酒泉市| 土默特右旗| 乐山市| 行唐县| 赤壁市| 蓬溪县| 湄潭县| 潼南县| 闽侯县| 宿松县| 和平区| 通道| 石首市| 吉安市| 襄垣县| 榕江县| 龙口市| 治县。| 东兰县| 双鸭山市| 秀山| 忻城县| 宣威市| 宜良县| 叶城县| 大丰市| 奉节县| 湘乡市| 方城县| 西畴县| 内江市| 溧阳市| 嘉兴市| 肃北| 乐至县| 于都县| 永泰县| 灌阳县|