找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable

[復制鏈接]
查看: 27621|回復: 61
樓主
發(fā)表于 2025-3-21 19:57:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lectures in Knot Theory
副標題An Exploration of Co
編輯Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks
視頻videohttp://file.papertrans.cn/584/583451/583451.mp4
概述Explores contemporary topics including skein modules, Khovanov homology and Gram determinants motivated by knots.Lectures begin with an historical overview of a topic and gives motivation for the deve
叢書名稱Universitext
圖書封面Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable
描述.This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature.?Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject.?Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics,?physics, biology, and chemistry..Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject.?The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface.?The lecture style and array of
出版日期Textbook 2024
關(guān)鍵詞Knots and links; Fox colorings; Gram determinants; History of knots; Jones polynomial; Khovanov homology;
版次1
doihttps://doi.org/10.1007/978-3-031-40044-5
isbn_softcover978-3-031-40043-8
isbn_ebook978-3-031-40044-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Lectures in Knot Theory影響因子(影響力)




書目名稱Lectures in Knot Theory影響因子(影響力)學科排名




書目名稱Lectures in Knot Theory網(wǎng)絡公開度




書目名稱Lectures in Knot Theory網(wǎng)絡公開度學科排名




書目名稱Lectures in Knot Theory被引頻次




書目名稱Lectures in Knot Theory被引頻次學科排名




書目名稱Lectures in Knot Theory年度引用




書目名稱Lectures in Knot Theory年度引用學科排名




書目名稱Lectures in Knot Theory讀者反饋




書目名稱Lectures in Knot Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:24 | 只看該作者
Universitexthttp://image.papertrans.cn/l/image/583451.jpg
板凳
發(fā)表于 2025-3-22 01:43:43 | 只看該作者
978-3-031-40043-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 06:45:04 | 只看該作者
Lectures in Knot Theory978-3-031-40044-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
5#
發(fā)表于 2025-3-22 11:28:23 | 只看該作者
https://doi.org/10.1007/978-3-031-40044-5Knots and links; Fox colorings; Gram determinants; History of knots; Jones polynomial; Khovanov homology;
6#
發(fā)表于 2025-3-22 15:56:03 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:25 | 只看該作者
Goeritz and Seifert Matrices,the checkerboard coloring of a link diagram and the second using an oriented surface bounded by a link. We discuss several link invariants coming from the matrix including the determinant, the signature, the Alexander-Conway polynomial, and the Tristram-Levine signature.
8#
發(fā)表于 2025-3-22 22:35:05 | 只看該作者
The Jones Polynomial and Kauffman Bracket Polynomial,s lecture, we describe basic properties of these polynomials including mysterious relations with Fox 3??coloring. We also discuss Montesinos-Nakanishi 3??move conjecture and its solution using the Burnside group of link. We end by discussing the Nakanishi 4-move conjecture, from 1979.
9#
發(fā)表于 2025-3-23 03:19:08 | 只看該作者
The Temperley-Lieb Algebra and the Artin Braid Group,not theory and 3-manifold invariants. For example, its connection to knot theory stems from Louis H. Kauffman’s interpretation of the Temperley-Lieb algebra as a diagrammatic algebra consisting of .-tangles as its basis. In this lecture we explore the basics of the Temperley-Lieb algebra and Artin braid group.
10#
發(fā)表于 2025-3-23 08:14:48 | 只看該作者
The Kauffman Bracket Skein Module and Algebra of Surface I-Bundles,ter varieties, cluster algebras, and quantum Teichmüller spaces. In this lecture we explore some of these connections and discuss the structure of the Kauffman bracket skein algebras of several thickened surfaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平定县| 石河子市| 大宁县| 新安县| 务川| 麻城市| 浮梁县| 镇平县| 宜良县| 喀喇沁旗| 丘北县| 保德县| 宝鸡市| 桦川县| 喀喇| 林周县| 叶城县| 城步| 绿春县| 静乐县| 澄迈县| 临汾市| 无锡市| 监利县| 务川| 赞皇县| 石棉县| 曲靖市| 青河县| 台中县| 宁海县| 海伦市| 丰镇市| 登封市| 隆回县| 武强县| 汕尾市| 图片| 吉首市| 东乌珠穆沁旗| 历史|