找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kongruentes Policy-Lernen als lernbedingter Policy-Wandel; Zum Koordinierungsme Sandra Plümer Book 2024 Der/die Herausgeber bzw. der/die Au

[復(fù)制鏈接]
樓主: fallacy
31#
發(fā)表于 2025-3-26 22:22:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:07:05 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
34#
發(fā)表于 2025-3-27 12:17:48 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
35#
發(fā)表于 2025-3-27 17:33:52 | 只看該作者
Sandra Plümerble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
36#
發(fā)表于 2025-3-27 21:19:08 | 只看該作者
Sandra Plümerf smooth manifolds. In particular, it can be used to compare those aspects of field theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics, relativity theory, classical Yang-Mills theory and so on) that are described by such equations..Employing a geometric (jet space) app
37#
發(fā)表于 2025-3-28 00:06:53 | 只看該作者
Sandra Plümeralgebras of two modules in that class implies that the modules are isomorphic. A class satisfies a Jacobson radical isomorphism theorem if an isomorphism between only the Jacobson radicals of the endomorphism rings of two modules in that class implies that the modules are isomorphic. Jacobson radica
38#
發(fā)表于 2025-3-28 03:44:15 | 只看該作者
39#
發(fā)表于 2025-3-28 07:15:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 五台县| 澄江县| 广昌县| 固安县| 尉犁县| 兰州市| 雷波县| 治多县| 达日县| 望奎县| 砀山县| 新源县| 台北市| 喀什市| 金秀| 肃宁县| 泰兴市| 洮南市| 南郑县| 邛崃市| 城口县| 北流市| 临沭县| 盐池县| 井冈山市| 东乌珠穆沁旗| 兰州市| 将乐县| 甘孜县| 台山市| 乡宁县| 米林县| 满城县| 监利县| 荥经县| 苗栗县| 波密县| 永善县| 彭山县| 灵武市|