找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201

[復制鏈接]
樓主: ACE313
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:31 | 只看該作者
Jacek Wo?nytural deregulation, prudential reregulation, internationalization, and changes in corporate behavior, such as growing disintermediation and increased emphasis on shareholder value (Berger et al., 2010). The global financial crisis of 2008–09 also accentuated these pressures and illustrated that bank
34#
發(fā)表于 2025-3-27 10:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:01 | 只看該作者
36#
發(fā)表于 2025-3-27 21:24:14 | 只看該作者
Sets, concepts of subsets, equality of sets, the null set, the union, and intersection of sets. In the final section, we will take a closer look at the language of mathematical proof. At every stage of our close reading of the mathematical narrative, we will be looking for the mental patterns like image
37#
發(fā)表于 2025-3-27 22:05:29 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:32 | 只看該作者
Groups, blending. This time we will focus on the narrative of the group theory considered to be one of the most beautiful areas of algebra (especially for the finite groups). This is how the chapter on group theory begins in Herstein’s handbook:
39#
發(fā)表于 2025-3-28 07:07:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:03:00 | 只看該作者
Killing 2-Forms in Dimension 4, of Calabi type, or, generically, . gives rise to an ambitoric structure of hyperbolic type, in particular depends locally on two functions of one variable. Compact examples of either types are provided.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新蔡县| 盈江县| 大连市| 庆阳市| 自治县| 肇庆市| 巍山| 天等县| 南和县| 兴海县| 新和县| 广饶县| 临颍县| 西和县| 丰宁| 巫山县| 大同市| 天峨县| 甘孜| 肇东市| 永泰县| 沽源县| 武鸣县| 商都县| 海丰县| 武功县| 明光市| 西林县| 西青区| 延津县| 红河县| 阿鲁科尔沁旗| 新疆| 株洲市| 凤翔县| 台南市| 木兰县| 高要市| 醴陵市| 镇赉县| 青岛市|