找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201

[復制鏈接]
樓主: ACE313
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:31 | 只看該作者
Jacek Wo?nytural deregulation, prudential reregulation, internationalization, and changes in corporate behavior, such as growing disintermediation and increased emphasis on shareholder value (Berger et al., 2010). The global financial crisis of 2008–09 also accentuated these pressures and illustrated that bank
34#
發(fā)表于 2025-3-27 10:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:01 | 只看該作者
36#
發(fā)表于 2025-3-27 21:24:14 | 只看該作者
Sets, concepts of subsets, equality of sets, the null set, the union, and intersection of sets. In the final section, we will take a closer look at the language of mathematical proof. At every stage of our close reading of the mathematical narrative, we will be looking for the mental patterns like image
37#
發(fā)表于 2025-3-27 22:05:29 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:32 | 只看該作者
Groups, blending. This time we will focus on the narrative of the group theory considered to be one of the most beautiful areas of algebra (especially for the finite groups). This is how the chapter on group theory begins in Herstein’s handbook:
39#
發(fā)表于 2025-3-28 07:07:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:03:00 | 只看該作者
Killing 2-Forms in Dimension 4, of Calabi type, or, generically, . gives rise to an ambitoric structure of hyperbolic type, in particular depends locally on two functions of one variable. Compact examples of either types are provided.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐池县| 卫辉市| 绥化市| 荣成市| 江山市| 特克斯县| 祁门县| 历史| 太仓市| 大冶市| 呼和浩特市| 福海县| 夏河县| 延边| 建瓯市| 陕西省| 会同县| 渭源县| 驻马店市| 建宁县| 南安市| 湾仔区| 聂拉木县| 临澧县| 桐庐县| 哈密市| 靖西县| 抚松县| 文山县| 嘉兴市| 柳江县| 万荣县| 浦县| 彝良县| 宣武区| 天台县| 茂名市| 邵阳县| 应城市| 贞丰县| 陇南市|