找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201

[復(fù)制鏈接]
查看: 12418|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:20:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱How We Understand Mathematics
副標(biāo)題Conceptual Integrati
編輯Jacek Wo?ny
視頻videohttp://file.papertrans.cn/429/428720/428720.mp4
概述Analyzes the language of pure mathematics in various advanced-level sources.Systemically covers the whole course of advanced, academic-level algebra.Presents topics in the order usually taught to stud
叢書(shū)名稱Mathematics in Mind
圖書(shū)封面Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201
描述.This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book?follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending.?..This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well.?.
出版日期Book 2018
關(guān)鍵詞linear transformations; fields; set theory; vector spaces; ring theory; blending theory; mappings; Abelian
版次1
doihttps://doi.org/10.1007/978-3-319-77688-0
isbn_softcover978-3-030-08513-1
isbn_ebook978-3-319-77688-0Series ISSN 2522-5405 Series E-ISSN 2522-5413
issn_series 2522-5405
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書(shū)目名稱How We Understand Mathematics影響因子(影響力)




書(shū)目名稱How We Understand Mathematics影響因子(影響力)學(xué)科排名




書(shū)目名稱How We Understand Mathematics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱How We Understand Mathematics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱How We Understand Mathematics被引頻次




書(shū)目名稱How We Understand Mathematics被引頻次學(xué)科排名




書(shū)目名稱How We Understand Mathematics年度引用




書(shū)目名稱How We Understand Mathematics年度引用學(xué)科排名




書(shū)目名稱How We Understand Mathematics讀者反饋




書(shū)目名稱How We Understand Mathematics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:39 | 只看該作者
enerally. In the third chapter the legal practice of banishment as a punitive and coercive measure is discussed. The final chapter focuses on the redemption of exiles, either because their punishment was completed, or because they arranged for the payment of outstanding fines.978-3-030-88867-1
板凳
發(fā)表于 2025-3-22 02:53:44 | 只看該作者
Jacek Wo?nyenerally. In the third chapter the legal practice of banishment as a punitive and coercive measure is discussed. The final chapter focuses on the redemption of exiles, either because their punishment was completed, or because they arranged for the payment of outstanding fines.978-3-030-88867-1
地板
發(fā)表于 2025-3-22 05:00:36 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:11:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:17:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:51 | 只看該作者
Jacek Wo?nyl (ECB, 2012). The big, internationally active banks are being asked to hold even more capital and liquidity under Basel III. In such an environment, many banks are finding it too costly and therefore difficult to issue new capital and the only way they can boost capital is to refrain from capital c
10#
發(fā)表于 2025-3-23 05:41:55 | 只看該作者
ich may induce borrowers to assume greater risk leading to greater default. In competitive banking markets loan rates are lower, Too-Big-To-Fail issues and safety net subsidies are smaller, and this results in a positive link between bank competition and stability (Boyd and De Nicoló, 2005). It coul
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大石桥市| 台山市| 鄯善县| 微山县| 沙坪坝区| 西青区| 资阳市| 西丰县| 汾阳市| 太仆寺旗| 津南区| 黎川县| 车险| 阿克苏市| 张家港市| 安康市| 鄢陵县| 溆浦县| 莲花县| 五寨县| 鱼台县| 五河县| 临猗县| 惠安县| 萨嘎县| 黄梅县| 桦甸市| 彭山县| 贵港市| 那曲县| 荥经县| 吉林省| 福泉市| 赫章县| 萍乡市| 朔州市| 隆回县| 平武县| 九寨沟县| 沂南县| 彭泽县|