找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201

[復制鏈接]
查看: 12427|回復: 40
樓主
發(fā)表于 2025-3-21 17:20:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱How We Understand Mathematics
副標題Conceptual Integrati
編輯Jacek Wo?ny
視頻videohttp://file.papertrans.cn/429/428720/428720.mp4
概述Analyzes the language of pure mathematics in various advanced-level sources.Systemically covers the whole course of advanced, academic-level algebra.Presents topics in the order usually taught to stud
叢書名稱Mathematics in Mind
圖書封面Titlebook: How We Understand Mathematics; Conceptual Integrati Jacek Wo?ny Book 2018 Springer International Publishing AG, part of Springer Nature 201
描述.This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book?follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending.?..This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well.?.
出版日期Book 2018
關鍵詞linear transformations; fields; set theory; vector spaces; ring theory; blending theory; mappings; Abelian
版次1
doihttps://doi.org/10.1007/978-3-319-77688-0
isbn_softcover978-3-030-08513-1
isbn_ebook978-3-319-77688-0Series ISSN 2522-5405 Series E-ISSN 2522-5413
issn_series 2522-5405
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱How We Understand Mathematics影響因子(影響力)




書目名稱How We Understand Mathematics影響因子(影響力)學科排名




書目名稱How We Understand Mathematics網(wǎng)絡公開度




書目名稱How We Understand Mathematics網(wǎng)絡公開度學科排名




書目名稱How We Understand Mathematics被引頻次




書目名稱How We Understand Mathematics被引頻次學科排名




書目名稱How We Understand Mathematics年度引用




書目名稱How We Understand Mathematics年度引用學科排名




書目名稱How We Understand Mathematics讀者反饋




書目名稱How We Understand Mathematics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:01:39 | 只看該作者
enerally. In the third chapter the legal practice of banishment as a punitive and coercive measure is discussed. The final chapter focuses on the redemption of exiles, either because their punishment was completed, or because they arranged for the payment of outstanding fines.978-3-030-88867-1
板凳
發(fā)表于 2025-3-22 02:53:44 | 只看該作者
Jacek Wo?nyenerally. In the third chapter the legal practice of banishment as a punitive and coercive measure is discussed. The final chapter focuses on the redemption of exiles, either because their punishment was completed, or because they arranged for the payment of outstanding fines.978-3-030-88867-1
地板
發(fā)表于 2025-3-22 05:00:36 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:11:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:17:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:51 | 只看該作者
Jacek Wo?nyl (ECB, 2012). The big, internationally active banks are being asked to hold even more capital and liquidity under Basel III. In such an environment, many banks are finding it too costly and therefore difficult to issue new capital and the only way they can boost capital is to refrain from capital c
10#
發(fā)表于 2025-3-23 05:41:55 | 只看該作者
ich may induce borrowers to assume greater risk leading to greater default. In competitive banking markets loan rates are lower, Too-Big-To-Fail issues and safety net subsidies are smaller, and this results in a positive link between bank competition and stability (Boyd and De Nicoló, 2005). It coul
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
治多县| 东港市| 谢通门县| 交口县| 鞍山市| 武安市| 桂东县| 买车| 仙居县| 科尔| 松阳县| 江门市| 洪江市| 广宁县| 红安县| 紫金县| 梧州市| 黎川县| 宣城市| 厦门市| 福海县| 营山县| 聊城市| 汾西县| 屏南县| 车致| 昌吉市| 潮州市| 兴海县| 五华县| 永登县| 临泉县| 镇坪县| 远安县| 镇原县| 麟游县| 武宁县| 灵宝市| 静海县| 内乡县| 石棉县|