找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復(fù)制鏈接]
樓主: SCOWL
21#
發(fā)表于 2025-3-25 04:40:05 | 只看該作者
22#
發(fā)表于 2025-3-25 11:11:56 | 只看該作者
https://doi.org/10.1007/978-0-387-09474-8sical variables. This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds..This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds.
23#
發(fā)表于 2025-3-25 13:03:43 | 只看該作者
24#
發(fā)表于 2025-3-25 19:03:22 | 只看該作者
25#
發(fā)表于 2025-3-25 21:33:42 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:00 | 只看該作者
Conference proceedings 19861st editionIn this chapter we collect various facts about the geometry of symplectic vector spaces and symplectic manifolds which are necessary in all that follows.
27#
發(fā)表于 2025-3-26 04:49:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:38 | 只看該作者
29#
發(fā)表于 2025-3-26 13:08:03 | 只看該作者
https://doi.org/10.1007/978-3-642-97468-7In this chapter we try to extend the technique of geometric prequantization to Poisson manifolds. This will be realized via the theory of symplectic groupoids in sense Karasev and Weinstein.
30#
發(fā)表于 2025-3-26 20:23:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗水县| 曲阜市| 柳河县| 德清县| 县级市| 株洲市| 京山县| 尼玛县| 乐安县| 库车县| 东丰县| 穆棱市| 会昌县| 来宾市| 南召县| 郑州市| 西安市| 宜兴市| 永定县| 锡林郭勒盟| 寻甸| 神木县| 揭阳市| 颍上县| 保定市| 常德市| 湾仔区| 固始县| 利川市| 阳江市| 都兰县| 乌兰浩特市| 衡东县| 青州市| 郸城县| 鸡东县| 通辽市| 平遥县| 淳化县| 宜都市| 洮南市|