找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復(fù)制鏈接]
查看: 26608|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:17:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hamiltonian Mechanical Systems and Geometric Quantization
編輯Mircea Puta
視頻videohttp://file.papertrans.cn/421/420635/420635.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization;  Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia
出版日期Book 1993
關(guān)鍵詞Hamiltonian mechanics; manifold; stability; symplectic geometry
版次1
doihttps://doi.org/10.1007/978-94-011-1992-4
isbn_softcover978-94-010-4880-4
isbn_ebook978-94-011-1992-4
copyrightSpringer Science+Business Media Dordrecht 1993
The information of publication is updating

書目名稱Hamiltonian Mechanical Systems and Geometric Quantization影響因子(影響力)




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization影響因子(影響力)學(xué)科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization網(wǎng)絡(luò)公開度




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization被引頻次




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization被引頻次學(xué)科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization年度引用




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization年度引用學(xué)科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization讀者反饋




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:14 | 只看該作者
Lie Groups. Momentum Mappings. Reduction.,le and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.
板凳
發(fā)表于 2025-3-22 02:17:16 | 只看該作者
Hamilton-Poisson Mechanics,sical variables. This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds..This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds.
地板
發(fā)表于 2025-3-22 05:57:01 | 只看該作者
Geometric Prequantization,ble progress has been made by returning to an examination of the mathematical foundations of classical physics and noting that they can be simply and elegantly phrased in terms of symplectic geometry. The resulting quantization theory, geometric quantization, is an outgrowth of independent work by K
5#
發(fā)表于 2025-3-22 12:26:11 | 只看該作者
Geometric Quantization,en it is clear that the corresponding operators δ. do not agree, and the Hilbert representation spaces are different. More precisely, the Hilbert space of the first consists of functions of . and . simultaneously, in the second case the Hilbert space consists of functions depending on the . only. Th
6#
發(fā)表于 2025-3-22 14:11:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:44:20 | 只看該作者
https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.
8#
發(fā)表于 2025-3-22 21:30:47 | 只看該作者
The Physics and Physical Chemistry of Waterle and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.
9#
發(fā)表于 2025-3-23 02:08:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:51:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 德保县| 娄底市| 漳平市| 玉龙| 和硕县| 蚌埠市| 恩平市| 工布江达县| 合作市| 洪江市| 静海县| 庆城县| 西乡县| 罗江县| 吉隆县| 揭西县| 宁津县| 二连浩特市| 阿鲁科尔沁旗| 平乐县| 岳普湖县| 保山市| 澄江县| 盐津县| 河北省| 郴州市| 如皋市| 辽阳市| 潜山县| 钦州市| 涟水县| 缙云县| 嫩江县| 邢台市| 高平市| 章丘市| 抚远县| 罗平县| 关岭| 乌拉特后旗|