找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復(fù)制鏈接]
樓主: SCOWL
11#
發(fā)表于 2025-3-23 12:54:02 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:17 | 只看該作者
14#
發(fā)表于 2025-3-23 22:26:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:51:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:27:47 | 只看該作者
https://doi.org/10.1007/978-3-031-45245-1ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
18#
發(fā)表于 2025-3-24 16:21:38 | 只看該作者
Geometric Quantization,ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
19#
發(fā)表于 2025-3-24 20:34:20 | 只看該作者
20#
發(fā)表于 2025-3-25 01:59:25 | 只看該作者
https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 福海县| 塘沽区| 河津市| 大城县| 彭州市| 澄迈县| 马边| 阿拉善盟| 莒南县| 沿河| 乌鲁木齐市| 新密市| 湖南省| 习水县| 昌宁县| 虞城县| 郯城县| 股票| 湟源县| 晴隆县| 犍为县| 扎兰屯市| 平果县| 乌拉特前旗| 北宁市| 宁强县| 东阿县| 汝南县| 英超| 紫金县| 天祝| 孟村| 曲阳县| 甘谷县| 重庆市| 巴林左旗| 光山县| 六盘水市| 马鞍山市| 丽江市|