找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復(fù)制鏈接]
樓主: SCOWL
11#
發(fā)表于 2025-3-23 12:54:02 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:17 | 只看該作者
14#
發(fā)表于 2025-3-23 22:26:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:51:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:27:47 | 只看該作者
https://doi.org/10.1007/978-3-031-45245-1ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
18#
發(fā)表于 2025-3-24 16:21:38 | 只看該作者
Geometric Quantization,ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
19#
發(fā)表于 2025-3-24 20:34:20 | 只看該作者
20#
發(fā)表于 2025-3-25 01:59:25 | 只看該作者
https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南市| 沈阳市| 高邑县| 巩义市| 集安市| 阜城县| 萨迦县| 定结县| 洪泽县| 顺义区| 娄底市| 临西县| 山丹县| 辽中县| 清流县| 衡阳县| 宜宾市| 阿拉善左旗| 鄂尔多斯市| 崇州市| 淮安市| 邓州市| 象州县| 壤塘县| 禄劝| 偏关县| 许昌市| 南木林县| 盐城市| 会昌县| 三台县| 理塘县| 丰城市| 余干县| 西乡县| 敦化市| 琼海市| 宜川县| 宾川县| 齐齐哈尔市| 永修县|