找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
31#
發(fā)表于 2025-3-26 22:34:06 | 只看該作者
The Physicists’ View of Nature Part 2symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
32#
發(fā)表于 2025-3-27 03:33:48 | 只看該作者
Book 2019an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry..
33#
發(fā)表于 2025-3-27 09:08:16 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:51 | 只看該作者
2191-8198 ble to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry..978-3-030-27226-5978-3-030-27227-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
35#
發(fā)表于 2025-3-27 16:39:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:46:55 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:20 | 只看該作者
https://doi.org/10.1007/978-1-4612-4646-6s that around any point of a symplectic manifold, there is a chart for which the symplectic form has a particularly nice form. In this section, we give a proof of an equivariant version of the theorem and look at some corollaries. We direct the reader to [.] or Sect.?22 of [.] for more details.
38#
發(fā)表于 2025-3-28 03:17:18 | 只看該作者
https://doi.org/10.1007/978-1-60761-134-9irillov–Kostant–Souriau form). An example of an orbit of the adjoint action is the two-sphere, which is an orbit of the action of the rotation group .(3) on its Lie algebra .. Background information on Lie groups may be found in Appendix.
39#
發(fā)表于 2025-3-28 06:29:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满洲里市| 谷城县| 临洮县| 青龙| 尖扎县| 邛崃市| 乌海市| 环江| 河间市| 泰顺县| 井陉县| 黔江区| 岚皋县| 凤台县| 衡山县| 百色市| 洱源县| 平武县| 丰镇市| 迁西县| 通道| 甘泉县| 凯里市| 剑川县| 余庆县| 绥德县| 自贡市| 金乡县| 阿图什市| 泊头市| 嘉禾县| 平湖市| 泾川县| 许昌县| 宜黄县| 吴堡县| 枞阳县| 隆昌县| 航空| 莱州市| 沙雅县|