找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 13:03:33 | 只看該作者
https://doi.org/10.1007/978-1-4612-4646-6s that around any point of a symplectic manifold, there is a chart for which the symplectic form has a particularly nice form. In this section, we give a proof of an equivariant version of the theorem and look at some corollaries. We direct the reader to [.] or Sect.?22 of [.] for more details.
12#
發(fā)表于 2025-3-23 16:26:59 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:38 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:45 | 只看該作者
The Physics Behind Semiconductor Technologyase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
15#
發(fā)表于 2025-3-24 03:33:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:32:24 | 只看該作者
The Symplectic Structure on Coadjoint Orbits,irillov–Kostant–Souriau form). An example of an orbit of the adjoint action is the two-sphere, which is an orbit of the action of the rotation group .(3) on its Lie algebra .. Background information on Lie groups may be found in Appendix.
17#
發(fā)表于 2025-3-24 11:09:08 | 只看該作者
,The Duistermaat–Heckman Theorem,ich comes from the original article [.]) describes how the Liouville measure of a symplectic quotient varies. The second describes an oscillatory integral over a symplectic manifold equipped with a Hamiltonian group action and can be characterized by the slogan “Stationary phase is exact”.
18#
發(fā)表于 2025-3-24 16:58:33 | 只看該作者
Geometric Quantization,ase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
19#
發(fā)表于 2025-3-24 22:01:45 | 只看該作者
20#
發(fā)表于 2025-3-25 02:59:25 | 只看該作者
Hamiltonian Group Actions and Equivariant Cohomology978-3-030-27227-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲜城| 周宁县| 千阳县| 临潭县| 江阴市| 通榆县| 兰西县| 佛学| 北川| 临猗县| 呼伦贝尔市| 和顺县| 长乐市| 侯马市| 顺平县| 泸定县| 唐山市| 岫岩| 化隆| 梁山县| 黄石市| 日喀则市| 亳州市| 永州市| 新田县| 徐汇区| 延寿县| 鄂托克前旗| 涪陵区| 常州市| 桂平市| 普安县| 崇义县| 武汉市| 湘潭市| 崇义县| 波密县| 广汉市| 鹤岗市| 常宁市| 张家川|