找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
21#
發(fā)表于 2025-3-25 06:11:24 | 只看該作者
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory
22#
發(fā)表于 2025-3-25 10:51:12 | 只看該作者
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv
23#
發(fā)表于 2025-3-25 13:16:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:55 | 只看該作者
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
25#
發(fā)表于 2025-3-25 21:00:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:30:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:31:14 | 只看該作者
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.
29#
發(fā)表于 2025-3-26 12:54:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 莱州市| 榆中县| 济宁市| 枣阳市| 津市市| 盐亭县| 达州市| 尖扎县| 霍城县| 自治县| 高要市| 昭通市| 沁水县| 济阳县| 珠海市| 晴隆县| 锦屏县| 孝感市| 阳谷县| 缙云县| 太湖县| 忻州市| 汽车| 宁河县| 定日县| 桐城市| 沐川县| 普兰店市| 洛浦县| 渑池县| 延长县| 攀枝花市| 双流县| 淮安市| 广南县| 南和县| 上栗县| 那坡县| 永胜县| 景东|