找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: cobble
51#
發(fā)表于 2025-3-30 09:48:42 | 只看該作者
A New Proof of Anosov’s Averaging Theorem[6]. Our result comprises both a new proof, as well as a generalization, of D.V. Anosov’s general multiphase averaging theorem [1] for systems of ODEs with slow variables evolving in .. and fast variables evolving on a smooth compact immersed manifold. We extend Anosov’s work by allowing the fast va
52#
發(fā)表于 2025-3-30 13:15:08 | 只看該作者
Bifurcations in the Generalized van der Waals Interaction: The Polar Case (, = 0)der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem
53#
發(fā)表于 2025-3-30 17:47:58 | 只看該作者
54#
發(fā)表于 2025-3-30 20:54:07 | 只看該作者
Linearized Dynamics of Symmetric Lagrangian Systems and bifurcation behavior tractable even for moderately large systems. The variational characterization of relative equilibria, i.e. steady motions generated by elements of the symmetry group, greatly simplifies many of the necessary calculations. Local minima modulo symmetries of an appropriate ene
55#
發(fā)表于 2025-3-31 03:48:36 | 只看該作者
56#
發(fā)表于 2025-3-31 07:37:30 | 只看該作者
57#
發(fā)表于 2025-3-31 11:50:32 | 只看該作者
58#
發(fā)表于 2025-3-31 13:23:00 | 只看該作者
Non-Canonical Transformations of Nonlinear Hamiltoniansion is used to eliminate terms from the perturbation that are not of the same form as those in the main part, or even to eliminate the perturbation entirely. The system is thus transformed into a modified version of the principal part. In conjunction with a time transformation which recovers the dyn
59#
發(fā)表于 2025-3-31 19:38:23 | 只看該作者
60#
發(fā)表于 2025-3-31 23:15:26 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅江县| 高碑店市| 肥城市| 太仆寺旗| 石林| 罗甸县| 黎城县| 江永县| 井冈山市| 太仓市| 西和县| 金山区| 中方县| 嘉义县| 襄垣县| 湖州市| 荣成市| 民县| 湖北省| 柞水县| 鸡泽县| 丹阳市| 蓬溪县| 扎囊县| 张掖市| 双辽市| 延津县| 乌拉特后旗| 南昌市| 平舆县| 溧阳市| 巴彦县| 呼伦贝尔市| 彰武县| 敖汉旗| 阿合奇县| 兰州市| 东山县| 保定市| 和平县| 闵行区|