找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 04:31:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:10 | 只看該作者
Factoring the Lunar Problem: Geometry, Dynamics, and Algebra in the Lunar Theory from Kepler to Claiaratus could get top-heavy. Tycho Brahe, for one was bothered by geometrical complication. Here is his theory (Fig. 1.1), developed during the 1590s, for the two main inequalities in the Moon’s longitude.
23#
發(fā)表于 2025-3-25 15:28:50 | 只看該作者
24#
發(fā)表于 2025-3-25 18:11:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:13:45 | 只看該作者
26#
發(fā)表于 2025-3-26 02:49:40 | 只看該作者
https://doi.org/10.1007/978-90-481-3009-2amical equations, the procedure synchronizes the motions of the perturbed system onto those of the unperturbed part. The method is most useful when the unperturbed part has solutions in non-elementary functions. Applications of the method are described.
27#
發(fā)表于 2025-3-26 06:36:50 | 只看該作者
28#
發(fā)表于 2025-3-26 12:13:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:12:30 | 只看該作者
https://doi.org/10.1007/978-94-011-9522-5[CL]). In the Poincaré compactification of some .-body problems the critical points which appear there are extremely degenerate. In this paper we focus our attention on generic properties of arbitrary Hamiltonian polynomial vector fields, especially at infinity.
30#
發(fā)表于 2025-3-26 20:45:23 | 只看該作者
https://doi.org/10.1007/978-1-349-19731-6 normal form techniques adapted to a slightly generalized version of the DiPerna-Lions theory of generalized flows for ODEs [5]. By specializing to the case of Hamiltonian vector fields, we obtain an interesting and somewhat surprising result for Hamiltonians of low regularity, as well as a reason for including this article in these proceedings.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 平塘县| 宜春市| 逊克县| 金门县| 溧阳市| 瑞丽市| 金坛市| 莱西市| 武鸣县| 灵台县| 台湾省| 延庆县| 嘉峪关市| 皮山县| 荔波县| 铜梁县| 潢川县| 赣州市| 正蓝旗| 阿城市| 咸丰县| 江源县| 军事| 上蔡县| 清苑县| 比如县| 巩留县| 许昌市| 莱芜市| 佳木斯市| 扎兰屯市| 泸水县| 寿阳县| 丹棱县| 墨江| 保定市| 大庆市| 深泽县| 麻城市| 泸溪县|