找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: cobble
11#
發(fā)表于 2025-3-23 13:27:38 | 只看該作者
Transverse Homoclinic Connections for Geodesic FlowsGiven a two dimensional Riemannian manifold for which the geodesic flow has a homoclinic (heteroclinic) connection, we show how to make a .. small perturbation of the metric for which the connection becomes transverse. We apply this result to several examples.
12#
發(fā)表于 2025-3-23 15:00:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:30 | 只看該作者
Suspension of Symplectic Twist Maps by HamiltoniansWe extend some results of Moser [17], Bialy and Polterovitch [1], on the suspension of symplectic twist maps by Hamiltonian flows.
14#
發(fā)表于 2025-3-24 00:41:04 | 只看該作者
Analytic Torsion, Flows and FoliationsWe present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.
15#
發(fā)表于 2025-3-24 05:49:45 | 只看該作者
The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero EnergyWe study the global flow defined by the three-dimensional isosceles three-body problem with zero energy. A new set of coordinates and a scaled time are introduced which alow the phase space to be compactified by adding boundary manifolds. Geometric argument gives an almost complete sketch of the global phase portrait of this gravitational system.
16#
發(fā)表于 2025-3-24 09:10:35 | 只看該作者
978-1-4613-8450-2Springer-Verlag New York, Inc. 1995
17#
發(fā)表于 2025-3-24 12:02:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:08:13 | 只看該作者
https://doi.org/10.1007/978-1-4613-8448-9bifurcation; calculus; dynamical systems; hamiltonian system; stability
19#
發(fā)表于 2025-3-24 20:15:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:48 | 只看該作者
https://doi.org/10.1007/978-3-030-65343-9der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰州市| 思茅市| 百色市| 巴南区| 望奎县| 景德镇市| 来凤县| 乳山市| 滦南县| 闸北区| 三亚市| 专栏| 西吉县| 富源县| 札达县| 天柱县| 巨野县| 济宁市| 藁城市| 岚皋县| 浪卡子县| 柘城县| 垦利县| 小金县| 永兴县| 铁力市| 林周县| 辉南县| 息烽县| 旅游| 香格里拉县| 突泉县| 平遥县| 泸定县| 凤翔县| 三江| 彩票| 广西| 江达县| 拉萨市| 益阳市|