找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: cobble
11#
發(fā)表于 2025-3-23 13:27:38 | 只看該作者
Transverse Homoclinic Connections for Geodesic FlowsGiven a two dimensional Riemannian manifold for which the geodesic flow has a homoclinic (heteroclinic) connection, we show how to make a .. small perturbation of the metric for which the connection becomes transverse. We apply this result to several examples.
12#
發(fā)表于 2025-3-23 15:00:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:30 | 只看該作者
Suspension of Symplectic Twist Maps by HamiltoniansWe extend some results of Moser [17], Bialy and Polterovitch [1], on the suspension of symplectic twist maps by Hamiltonian flows.
14#
發(fā)表于 2025-3-24 00:41:04 | 只看該作者
Analytic Torsion, Flows and FoliationsWe present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.
15#
發(fā)表于 2025-3-24 05:49:45 | 只看該作者
The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero EnergyWe study the global flow defined by the three-dimensional isosceles three-body problem with zero energy. A new set of coordinates and a scaled time are introduced which alow the phase space to be compactified by adding boundary manifolds. Geometric argument gives an almost complete sketch of the global phase portrait of this gravitational system.
16#
發(fā)表于 2025-3-24 09:10:35 | 只看該作者
978-1-4613-8450-2Springer-Verlag New York, Inc. 1995
17#
發(fā)表于 2025-3-24 12:02:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:08:13 | 只看該作者
https://doi.org/10.1007/978-1-4613-8448-9bifurcation; calculus; dynamical systems; hamiltonian system; stability
19#
發(fā)表于 2025-3-24 20:15:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:48 | 只看該作者
https://doi.org/10.1007/978-3-030-65343-9der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧阳市| SHOW| 岳阳市| 孝义市| 繁峙县| 苏尼特右旗| 乌什县| 漳浦县| 遂昌县| 峡江县| 葵青区| 剑阁县| 蓬溪县| 逊克县| 壶关县| 安化县| 湟中县| 九台市| 汨罗市| 民乐县| 黄平县| 海口市| 凉山| 高邑县| 本溪市| 高邮市| 新建县| 云梦县| 林周县| 隆化县| 井陉县| 文水县| 乌鲁木齐县| 龙陵县| 庆城县| 巴东县| 开远市| 天长市| 奉贤区| 朝阳市| 霍州市|