找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: mountebank
41#
發(fā)表于 2025-3-28 15:55:34 | 只看該作者
42#
發(fā)表于 2025-3-28 21:59:25 | 只看該作者
43#
發(fā)表于 2025-3-28 23:46:04 | 只看該作者
Improved VLN-BERT with?Reinforcing Endpoint Alignment for?Vision-and-Language Navigationss Rate (SR) on the seen and unseen validation sets of the R2R dataset, respectively. Furthermore, inspired by Airbert, we combine shuffling loss with the reinforcing endpoint alignment task, resulting in a new model named SREA-VLN-BERT. SREA-VLN-BERT achieves improvements of 3.53% and 0.94% in SR o
44#
發(fā)表于 2025-3-29 04:20:19 | 只看該作者
Bridging the Language Gap: Domain-Specific Dataset Construction for Medical LLMsks. A bidirectional encoder representation from transformer-based comparative analysis revealed comparable performance. The objective is to streamline LLM applications across diverse domains, thereby enhancing language model efficiency. In the future, our efforts will be directed towards implementin
45#
發(fā)表于 2025-3-29 09:53:13 | 只看該作者
Integrating Text-to-Image and?Vision Language Models for?Synergistic Dataset Generation: The Creatio increased by 15% (from 0.54 to 0.625), BLEU score by 20% (from 0.026 to 0.032), and ROUGE-L score by 18% (from 0.20 to 0.235). These results demonstrate substantial enhancements in the multimodal model’s performance. The dataset is specifically designed to support the development and fine-tuning of
46#
發(fā)表于 2025-3-29 12:38:59 | 只看該作者
Semantic-Degrade Learning Framework for?Open World Object Detectionchmark validate the progressiveness of our framework. The experimental results show that compared with other state-of-the-art methods, our model achieves nearly 50% improvement in unknown mAP and even higher known detection performance, demonstrating excellent detection performance.
47#
發(fā)表于 2025-3-29 16:05:18 | 只看該作者
48#
發(fā)表于 2025-3-29 23:46:52 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:44 | 只看該作者
50#
發(fā)表于 2025-3-30 08:06:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛南县| 绿春县| 建平县| 宁德市| 通辽市| 陇西县| 阿拉尔市| 汉源县| 南宫市| 新源县| 广东省| 淮南市| 舞钢市| 三门县| 庆安县| 织金县| 通河县| 武隆县| 咸宁市| 霍城县| 祁阳县| 微博| 台东县| 湖南省| 阿荣旗| 宜兴市| 林州市| 宜阳县| 呼伦贝尔市| 茌平县| 个旧市| 辉南县| 泌阳县| 托克托县| 平江县| 象州县| 长治县| 莒南县| 乾安县| 金溪县| 孝义市|