找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: mountebank
21#
發(fā)表于 2025-3-25 04:04:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:38:57 | 只看該作者
CafeLLM: Context-Aware Fine-Grained Semantic Clustering Using Large Language Modelsed and esoteric in many domains, presenting unique challenges that conventional named entity recognition (NER) or clustering methods fail to address. Here, we present CafeLLM, a Context-Aware Fine-grained clustering method that uses Large Language Models (LLMs) to cluster terms or phrases from these
23#
發(fā)表于 2025-3-25 14:56:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:26:01 | 只看該作者
MADP: Multi-modal Sequence Learning for?Alzheimer’s Disease Prediction with?Missing Dataease progression and improving the quality of life for affected individuals. A significant challenge in this context is the substantial amount of missing data, which arises due to the variable health status of subjects or other unpredictable circumstances. Moreover, existing methods struggle to accu
25#
發(fā)表于 2025-3-25 22:06:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:44 | 只看該作者
Improved VLN-BERT with?Reinforcing Endpoint Alignment for?Vision-and-Language Navigationng visual information from the surroundings. Currently, many pre-trained models and pre-training tasks have been proposed to assist agents in navigating unfamiliar environments using visual and linguistic information. However, ensuring that the agent stops near the endpoint is a challenging problem.
27#
發(fā)表于 2025-3-26 04:58:20 | 只看該作者
Bridging the Language Gap: Domain-Specific Dataset Construction for Medical LLMss a variety of tasks such as text generation, translation, and question answering. However, their effectiveness in specialized domains is constrained by the lack of domain-specific data. This paper presents an effective methodology for constructing domain-specific datasets using domain-specific corp
28#
發(fā)表于 2025-3-26 09:36:05 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:14 | 只看該作者
Semantic-Degrade Learning Framework for?Open World Object Detectionnature of real-world scenarios where systems encounter unknown objects. Unlike existing OWOD approaches which often rely on manually selected unknown proposals, we introduce an Adaptive Semantic-Degrade Learning framework. This framework, inspired by cognitive development theory, guides the model to
30#
發(fā)表于 2025-3-26 19:44:23 | 只看該作者
Multi-modal Prompts with?Feature Decoupling for?Open-Vocabulary Object Detectionor training. The Prompt serves as a template to assist in the construction of textual descriptions for categories. With the development of open-vocabulary object detection, multi-modal prompts with better performance have emerged. However, existing multi-modal prompts fail to align the context and o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 14:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 沧州市| 仪陇县| 仁化县| 聊城市| 印江| 常熟市| 怀来县| 汾西县| 讷河市| 梅河口市| 左云县| 平南县| 武乡县| 平谷区| 泾川县| 新宁县| 太和县| 英超| 福海县| 和林格尔县| 都江堰市| 会理县| 海南省| 垦利县| 吴桥县| 罗江县| 余姚市| 兴安盟| 江津市| 镇赉县| 凤冈县| 霍邱县| 墨脱县| 武义县| 清水县| 峡江县| 临泽县| 收藏| 阜南县| 临邑县|