找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: mountebank
31#
發(fā)表于 2025-3-26 23:06:17 | 只看該作者
32#
發(fā)表于 2025-3-27 03:37:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:55:15 | 只看該作者
34#
發(fā)表于 2025-3-27 09:28:31 | 只看該作者
Robust Autonomous Unmanned Aerial Vehicle System for?Efficient Tracking of?Moving Objectsion algorithms to create an autonomous, robust, and stable AUAV system for tracking moving objects. By achieving autonomy control with the limited resources on the UAV, we extend the usability, offering new possibilities for various domains such as agriculture, search and rescue, and infrastructure inspection.
35#
發(fā)表于 2025-3-27 17:11:43 | 只看該作者
Adapter-Based Contextualized Meta Embeddingsne tuned ensemble on sentence classification tasks. Our results underscore the potential of parameter-efficient fine-tuning of ensembles as efficient and effective alternatives to full fine-tuning and standard ensemble methods.
36#
發(fā)表于 2025-3-27 20:11:50 | 只看該作者
Towards Point Cloud Compression for?Machine Perception: A Simple and?Strong Baseline by?Learning thels with fewer bits, saving bit-rate. Conversely, for more complex tasks (.., segmentation) or objects/scenarios, we use deeper depth levels with more bits to enhance performance. Experimental results on various datasets (.., ModelNet10, ModelNet40, ShapeNet, ScanNet, and KITTI) show that our point c
37#
發(fā)表于 2025-3-28 00:40:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:18:01 | 只看該作者
Towards Efficient Fault Detection of?Ultra-High Voltage Direct Current Circuit Breakerslarge amounts of fault case data. Therefore, we propose a self-supervised learning module for the proposed framework to pretrain the detection model using normal case data and finetune it using a small amount of fault case data. Experimental results demonstrate that the detection model trained with
39#
發(fā)表于 2025-3-28 07:51:46 | 只看該作者
Entity Augmentation for?Efficient Classification of?Vertically Partitioned Data with?Limited Overlap Augmentation technique generates meaningful labels for activations sent to the host, regardless of their originating entity, enabling efficient VFL without explicit entity alignment. With limited overlap between training data, this approach performs substantially better (e.g. with 5% overlap, 48.1%
40#
發(fā)表于 2025-3-28 11:15:13 | 只看該作者
CafeLLM: Context-Aware Fine-Grained Semantic Clustering Using Large Language Modelsphase, texts are paired in an iterative process to determine if they belong in the same cluster. Overall, we empirically demonstrate that CafeLLM is effective in clustering fine-grained and specialized textual datasets, providing users with a tool to automate and streamline the organization of such
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 07:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南江县| 正阳县| 青田县| 闸北区| 行唐县| 敦煌市| 石河子市| 江达县| 丰台区| 温州市| 镶黄旗| 泸定县| 榆林市| 吐鲁番市| 乐安县| 隆林| 郁南县| 达州市| 长垣县| 贵州省| 右玉县| 曲周县| 万载县| 丰都县| 湾仔区| 柘城县| 雅江县| 新沂市| 大兴区| 闽清县| 广州市| 且末县| 九龙城区| 阿勒泰市| 桑日县| 武宣县| 郎溪县| 鹤峰县| 兴和县| 化德县| 新田县|