找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Randomized
41#
發(fā)表于 2025-3-28 17:48:41 | 只看該作者
The Case of Combined Magnetic Fielduse. In this article, we present a hybrid model that combines the two techniques. This is accomplished by 2.5D drawings which are calculated in an incremental way. The method has been evaluated on collaboration networks.
42#
發(fā)表于 2025-3-28 21:50:33 | 只看該作者
43#
發(fā)表于 2025-3-28 23:08:54 | 只看該作者
44#
發(fā)表于 2025-3-29 07:01:30 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:21 | 只看該作者
46#
發(fā)表于 2025-3-29 14:36:08 | 只看該作者
47#
發(fā)表于 2025-3-29 17:18:36 | 只看該作者
Miscellaneous Asymptotics of Spectraly worse theoretical complexity. We compare our method with convex quadratic optimization and force scan approaches and find that it is faster than either, gives results of better quality than force scan methods and similar quality to the quadratic optimisation approach.
48#
發(fā)表于 2025-3-29 22:36:50 | 只看該作者
49#
發(fā)表于 2025-3-30 01:59:52 | 只看該作者
Crossings and Permutationsow the NP-hardness of the common and the max version for . ≥ 4 permutations (and . even), and establish a 2-2/. and a 2-approximation, respectively. For two permutations crossing minimization is solved by inspecting the drawings, whereas it remains open for three permutations.
50#
發(fā)表于 2025-3-30 04:14:45 | 只看該作者
Bar ,-Visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thicknesser of edges in a bar .-visibility graph. As a consequence, we obtain an upper bound of 12 on the chromatic number of bar 1-visibility graphs, and a tight upper bound of 8 on the size of the largest complete bar 1-visibility graph. We conjecture that bar 1-visibility graphs have thickness at most 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
时尚| 新乡县| 肇源县| 北安市| 金平| 丹棱县| 故城县| 克东县| 沾化县| 嘉定区| 本溪市| 阳曲县| 屏东县| 大渡口区| 惠来县| 湖州市| 香港 | 长沙市| 庄浪县| 涟源市| 美姑县| 同德县| 剑川县| 萨迦县| 胶南市| 准格尔旗| 长阳| 无为县| 敖汉旗| 邮箱| 调兵山市| 德州市| 开鲁县| 长丰县| 岳阳市| 庄河市| 清镇市| 伊川县| 罗江县| 遵义市| 长白|