找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Randomized
11#
發(fā)表于 2025-3-23 09:49:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:36:48 | 只看該作者
13#
發(fā)表于 2025-3-23 20:05:36 | 只看該作者
Transversal Structures on Triangulations, with Application to Straight-Line Drawingthe regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straight-line drawing algorithm for triangulations without non empty triangles, and more generally for 4-connected plane graphs with at least 4 border vertices. Takin
14#
發(fā)表于 2025-3-23 22:40:58 | 只看該作者
15#
發(fā)表于 2025-3-24 02:51:58 | 只看該作者
Two Trees Which Are Self–intersecting When Drawn Simultaneouslyhe goal is to simultaneously find a nice drawing for both of the sets. It has been found out that only restricted classes of planar graphs can be drawn simultaneously using straight lines and without crossings within the same edge set. In this paper, we negatively answer one of the most often posted
16#
發(fā)表于 2025-3-24 08:11:52 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:25 | 只看該作者
18#
發(fā)表于 2025-3-24 16:48:27 | 只看該作者
Brian Henderson,David J. Kinahan,Jens Ducréetudied extensively in the literature from a theoretic point of view and many bounds exist for a variety of graph classes. In this paper, we present the first algorithm able to compute the crossing number of general sparse graphs of moderate size and present computational results on a popular benchma
19#
發(fā)表于 2025-3-24 19:25:52 | 只看該作者
https://doi.org/10.1007/978-3-030-96462-7ycle . of .. Is it possible to draw?. as a non-intersecting closed curve inside ., following the circles that correspond in . to the vertices of . and the strips that connect them? We show that this test can be done in polynomial time and study this problem in the framework of clustered planarity fo
20#
發(fā)表于 2025-3-25 00:39:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 16:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
瑞金市| 桦甸市| 普兰店市| 老河口市| 嘉义县| 聂拉木县| 洪湖市| 宜阳县| 青州市| 桑日县| 原平市| 蒙阴县| 花莲市| 临湘市| 阿克苏市| 阿图什市| 綦江县| 五家渠市| 东山县| 文昌市| 左云县| 衡阳市| 昌宁县| 花莲县| 敦化市| 泸西县| 东乌珠穆沁旗| 正定县| 扎兰屯市| 常山县| 昔阳县| 应用必备| 吕梁市| 武山县| 西藏| 工布江达县| 丹凤县| 云安县| 日照市| 永定县| 昔阳县|