找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Randomized
31#
發(fā)表于 2025-3-26 22:59:18 | 只看該作者
Morphing Planar Graphs While Preserving Edge Directionse drawings of the transformation remain simple and parallel with . (and .)? We prove that a transformation can always be found in the case of orthogonal drawings; however, when edges are allowed to be in one of three or more slopes the problem becomes NP-hard.
32#
發(fā)表于 2025-3-27 01:39:42 | 只看該作者
On Rectilinear Duals for Vertex-Weighted Plane Graphsn edge in .. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph . admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.
33#
發(fā)表于 2025-3-27 05:17:21 | 只看該作者
34#
發(fā)表于 2025-3-27 11:06:17 | 只看該作者
Two Trees Which Are Self–intersecting When Drawn Simultaneouslyn simultaneously using straight lines and without crossings within the same edge set. In this paper, we negatively answer one of the most often posted open questions namely whether any two trees with the same vertex set can be drawn simultaneously crossing-free in a straight line way.
35#
發(fā)表于 2025-3-27 15:43:03 | 只看該作者
Brian Henderson,David J. Kinahan,Jens Ducréerk set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.
36#
發(fā)表于 2025-3-27 20:59:00 | 只看該作者
37#
發(fā)表于 2025-3-28 01:16:40 | 只看該作者
Exact Crossing Minimizationrk set of graphs. The approach uses a new integer linear programming formulation of the problem combined with strong heuristics and problem reduction techniques. This enables us to compute the crossing number for 91 percent of all graphs on up to 40 nodes in the benchmark set within a time limit of five minutes per graph.
38#
發(fā)表于 2025-3-28 04:32:31 | 只看該作者
Small Area Drawings of Outerplanar Graphserplanar drawings of general outerplanar graphs with .(..) area. Further, we study the interplay between the area requirements of the drawings of an outerplanar graph and the area requirements of a special class of drawings of its dual tree.
39#
發(fā)表于 2025-3-28 08:05:27 | 只看該作者
https://doi.org/10.1007/978-981-33-4876-9e drawings of the transformation remain simple and parallel with . (and .)? We prove that a transformation can always be found in the case of orthogonal drawings; however, when edges are allowed to be in one of three or more slopes the problem becomes NP-hard.
40#
發(fā)表于 2025-3-28 10:44:29 | 只看該作者
Contact Information Microformat: Hcardn edge in .. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph . admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
越西县| 莒南县| 泰和县| 姜堰市| 马鞍山市| 龙门县| 阳山县| 朔州市| 恩施市| 桦川县| 广饶县| 通山县| 喀什市| 东莞市| 安国市| 阿拉善左旗| 西城区| 沅陵县| 铜梁县| 叶城县| 南涧| 大城县| 二连浩特市| 霞浦县| 建瓯市| 钟祥市| 平罗县| 襄汾县| 新兴县| 靖边县| 信丰县| 彰化市| 友谊县| 潼南县| 黔东| 法库县| 普安县| 阿城市| 通山县| 南雄市| 潢川县|