找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
51#
發(fā)表于 2025-3-30 08:28:29 | 只看該作者
Mean Derivatives in Linear Spaceselson, ., .). This notion was first introduced by E. Nelson (., ., .) for the needs of so-called stochastic mechanics (see Chapter 15) but it turns out to be useful in some other problems of mathematical physics, economics, and elsewhere.
52#
發(fā)表于 2025-3-30 13:20:40 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
53#
發(fā)表于 2025-3-30 17:52:52 | 只看該作者
54#
發(fā)表于 2025-3-30 23:13:16 | 只看該作者
Kurzes Lehrbuch der Physiologischen ChemieIn this chapter we survey some notions in the theory of set-valued mappings which will be used below for the description of complicated mechanical systems such as systems with discontinuous forces, with control, etc.
55#
發(fā)表于 2025-3-31 04:41:21 | 只看該作者
Wolfgang Bühler,Hermann Gehring,Horst GlaserLet . be a finite-dimensional manifold. Recall that on the manifold . there is a vertical distribution . (a sub-bundle of the second tangent bundle .) whose fibers consist of vectors tangent to the fibers of .. The vectors belonging to . are said to be . (see Section 2.1).
56#
發(fā)表于 2025-3-31 05:43:49 | 只看該作者
Der gesunde Mensch (physische Hygiene),The Newton-Nelson equation is a version of Newton’s law formulated in terms of mixed symmetric second order mean derivatives. It describes the motion of a quantum particle in the framework of stochastic mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东港市| 旬阳县| 沛县| 鹤山市| 重庆市| 平阴县| 长寿区| 黑水县| 从江县| 澳门| 于都县| 榆林市| 都江堰市| 和平区| 黔东| 红桥区| 惠来县| 鹰潭市| 武功县| 沂水县| 敖汉旗| 天等县| 龙井市| 广汉市| 阿拉善左旗| 湘潭县| 灵寿县| 洮南市| 鲁山县| 琼结县| 塔城市| 偃师市| 嵩明县| 井陉县| 湟中县| 青龙| 五常市| 双辽市| 太仆寺旗| 明水县| 和林格尔县|