找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復制鏈接]
樓主: 大口水罐
41#
發(fā)表于 2025-3-28 17:54:59 | 只看該作者
42#
發(fā)表于 2025-3-28 19:34:59 | 只看該作者
Yuri E. GliklikhCovers branches of mathematics previously absent in monograph form.Combines methods of Global and Stochastic Analysis, enabling a more or less common treatment for areas of mathematical physics tradit
43#
發(fā)表于 2025-3-29 00:48:17 | 只看該作者
Kurzes Lehrbuch der Physiologischen Chemieartman, .)). The main aim of this section is to modify some conditions of this sort in such a way that they become necessary and sufficient. The trick here is the transition to extended phase spaces and an analysis of the so-called proper functions or complete Riemannian metrics on manifolds.
44#
發(fā)表于 2025-3-29 04:21:16 | 只看該作者
45#
發(fā)表于 2025-3-29 07:26:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:52:59 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:32 | 只看該作者
Kurzgefa?te Elektrizit?tswirtschaftslehre,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
48#
發(fā)表于 2025-3-29 21:19:48 | 只看該作者
49#
發(fā)表于 2025-3-30 02:50:12 | 只看該作者
Analysis on Groups of Diffeomorphisms... A detailed description of Sobolev spaces can be found, e.g., in (Egorov, .). An introduction to the manifold structure in functional sets can be found in (Eliasson, .). The reader may wish to consult (Ebin and Marsden, .) for details on the remaining material of this section.
50#
發(fā)表于 2025-3-30 05:40:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉木萨尔县| 宜兴市| 玛纳斯县| 筠连县| 峡江县| 阿巴嘎旗| 灵山县| 平武县| 独山县| 新干县| 托里县| 齐齐哈尔市| 临高县| 南安市| 荔波县| 青田县| 达州市| 房山区| 黑河市| 远安县| 静海县| 建湖县| 维西| 阿坝县| 大田县| 芦山县| 繁昌县| 郧西县| 金秀| 西城区| 鄂伦春自治旗| 鄂托克旗| 漯河市| 天全县| 广安市| 梁平县| 九龙坡区| 斗六市| 山阳县| 乌兰县| 凤翔县|