找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
21#
發(fā)表于 2025-3-25 03:47:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:59 | 只看該作者
Some Problems on Lorentz Manifoldsy and to describe the relativistic problems discussed below. We are mainly interested in the constructions of general relativity, the formulae of special relativity arising as consequences of the latter. Since the exposition is intended for mathematicians, we present it axiomatically, starting from
23#
發(fā)表于 2025-3-25 14:56:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:26 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
25#
發(fā)表于 2025-3-25 21:47:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:30 | 只看該作者
1864-5879 ss common treatment for areas of mathematical physics tradit.

Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is f

27#
發(fā)表于 2025-3-26 06:42:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:09:38 | 只看該作者
29#
發(fā)表于 2025-3-26 15:36:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:51 | 只看該作者
https://doi.org/10.1007/978-3-663-04195-5e description of this theory requires a complicated functional-analytic machinery that is not included in our exposition. For simplicity of presentation, we restrict ourselves to the finite-dimensional version of the theory since, in applications, the theories yield very similar results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 阜康市| 桂林市| 张家界市| 酉阳| 香港 | 调兵山市| 巫山县| 泾阳县| 海南省| 肥城市| 镶黄旗| 海伦市| 桃园县| 田林县| 太谷县| 札达县| 竹溪县| 民和| 虎林市| 永寿县| 海淀区| 无为县| 大新县| 甘肃省| 临猗县| 新宁县| 云浮市| 永善县| 永清县| 泗水县| 芦溪县| 德昌县| 兰州市| 青铜峡市| 高州市| 邯郸县| 永靖县| 务川| 酉阳| 禄丰县|