找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 13:28:46 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
12#
發(fā)表于 2025-3-23 15:35:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:53:49 | 只看該作者
Conclusion and Outlook,gical phase transition, new formulas of the glide-. topological invariant in the presence of inversion symmetry from both approaches in .-space and real-space, and a manipulation for such glide-symmetric . magnetic topological phase.
14#
發(fā)表于 2025-3-23 23:44:44 | 只看該作者
https://doi.org/10.1007/978-981-16-9077-8Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
15#
發(fā)表于 2025-3-24 05:46:17 | 只看該作者
978-981-16-9079-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
16#
發(fā)表于 2025-3-24 09:28:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:41 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富裕县| 偏关县| 社旗县| 凤凰县| 花莲县| 固阳县| 泸西县| 克拉玛依市| 齐齐哈尔市| 平阴县| 新余市| 汾西县| 高碑店市| 海原县| 麻栗坡县| 醴陵市| 沧源| 宁强县| 青田县| 广宗县| 伊宁县| 平和县| 平遥县| 项城市| 深水埗区| 宣城市| 贵定县| 深泽县| 玉山县| 黄龙县| 贵定县| 石门县| 江安县| 鹿泉市| 南京市| 浮梁县| 黎城县| 永嘉县| 通化市| 荥经县| 永春县|