找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 33893|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:32:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators
編輯Heejae Kim
視頻videohttp://file.papertrans.cn/386/385970/385970.mp4
概述Nominated as an outstanding Ph.D. thesis by the Tokyo Institute of Technology, Japan.Summarizes independent theories (such as symmetry-based indicators and K-theory) in one table.Offers design guideli
叢書名稱Springer Theses
圖書封面Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators;  Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde
描述This book presents a comprehensive theory on glide-symmetric topological crystalline insulators. Beginning with developing a theory of topological phase transitions between a topological and trivial phase, it derives a formula for topological invariance in a glide-symmetric topological phase when inversion symmetry is added into a system. It also shows that the addition of inversion symmetry drastically simplifies the formula, providing insights into this topological phase, and proposes potential implementations. Lastly, based on the above results, the author establishes a way to design topological photonic crystals. Allowing readers to gain a comprehensive understanding of the glide-symmetric topological crystalline insulators, the book offers a way to produce such a? topological phase in various physical systems, such as electronic and photonic systems, in the future.
出版日期Book 2022
關(guān)鍵詞Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
版次1
doihttps://doi.org/10.1007/978-981-16-9077-8
isbn_softcover978-981-16-9079-2
isbn_ebook978-981-16-9077-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators影響因子(影響力)




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators影響因子(影響力)學(xué)科排名




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators網(wǎng)絡(luò)公開度




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators被引頻次




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators被引頻次學(xué)科排名




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators年度引用




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators年度引用學(xué)科排名




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators讀者反饋




書目名稱Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:01:36 | 只看該作者
地板
發(fā)表于 2025-3-22 06:55:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:16:34 | 只看該作者
https://doi.org/10.1007/978-3-0348-5325-5ng a parameter in the magnetic system. We assume that the glide symmetry is preserved in the phase transition. First of all, we construct a theory describing such a phase transition based on an effective model. We find that the TCI-NI phase transition is always intervened by a spinless Weyl semimeta
6#
發(fā)表于 2025-3-22 16:50:23 | 只看該作者
https://doi.org/10.1007/978-3-0348-5323-1 number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
7#
發(fā)表于 2025-3-22 19:41:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:06 | 只看該作者
9#
發(fā)表于 2025-3-23 01:53:40 | 只看該作者
Topology, Symmetry, and Band Theory of Materials, the present chapter. First, we explain general properties of Berry phase, Berry connection, and Berry curvature and how these quantities are encoded in band theory described by Bloch electrons. We also explain how they correspond to the Chern number, as an example of topological invariants, associa
10#
發(fā)表于 2025-3-23 09:17:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴南区| 左权县| 龙里县| 富裕县| 太和县| 嫩江县| 武隆县| 朝阳市| 乐业县| 杨浦区| 安丘市| 许昌县| 汕尾市| 施秉县| 黄平县| 梁平县| 宁德市| 蒙阴县| 桐城市| 长汀县| 巴马| 洛浦县| 肃宁县| 佛教| 夏河县| 宜州市| 北流市| 定陶县| 南投县| 和田县| 宝清县| 边坝县| 枣庄市| 湟源县| 东辽县| 邛崃市| 南涧| 宁武县| 双峰县| 元江| 湘西|