找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 13:28:46 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
12#
發(fā)表于 2025-3-23 15:35:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:53:49 | 只看該作者
Conclusion and Outlook,gical phase transition, new formulas of the glide-. topological invariant in the presence of inversion symmetry from both approaches in .-space and real-space, and a manipulation for such glide-symmetric . magnetic topological phase.
14#
發(fā)表于 2025-3-23 23:44:44 | 只看該作者
https://doi.org/10.1007/978-981-16-9077-8Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
15#
發(fā)表于 2025-3-24 05:46:17 | 只看該作者
978-981-16-9079-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
16#
發(fā)表于 2025-3-24 09:28:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:41 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 邯郸县| 开鲁县| 和林格尔县| 新晃| 达拉特旗| 交口县| 平安县| 济宁市| 噶尔县| 阿城市| 阿勒泰市| 和硕县| 淮北市| 皮山县| 罗源县| 延长县| 浦城县| 安塞县| 富裕县| 马龙县| 辉南县| 海南省| 山东省| 抚州市| 梁平县| 资讯 | 垣曲县| 马山县| 博湖县| 清河县| 上犹县| 沅江市| 华池县| 石楼县| 德安县| 驻马店市| 洱源县| 吐鲁番市| 临邑县| 慈利县|