找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
查看: 15900|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:31:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Defining Relations in Groups
編輯A. Yu. Ol’shanskii
視頻videohttp://file.papertrans.cn/384/383805/383805.mp4
叢書名稱Mathematics and its Applications
圖書封面Titlebook: Geometry of Defining Relations in Groups;  A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group
出版日期Book 1991
關(guān)鍵詞Abelian group; Group theory; Partition; algorithms; geometry; sets; verification
版次1
doihttps://doi.org/10.1007/978-94-011-3618-1
isbn_softcover978-94-010-5605-2
isbn_ebook978-94-011-3618-1Series ISSN 0169-6378
issn_series 0169-6378
copyrightSpringer Science+Business Media Dordrecht 1991
The information of publication is updating

書目名稱Geometry of Defining Relations in Groups影響因子(影響力)




書目名稱Geometry of Defining Relations in Groups影響因子(影響力)學(xué)科排名




書目名稱Geometry of Defining Relations in Groups網(wǎng)絡(luò)公開度




書目名稱Geometry of Defining Relations in Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Defining Relations in Groups被引頻次




書目名稱Geometry of Defining Relations in Groups被引頻次學(xué)科排名




書目名稱Geometry of Defining Relations in Groups年度引用




書目名稱Geometry of Defining Relations in Groups年度引用學(xué)科排名




書目名稱Geometry of Defining Relations in Groups讀者反饋




書目名稱Geometry of Defining Relations in Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:23:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:57:42 | 只看該作者
Diagrams over Groups,ty of interpreting geometrically the deduction of consequences of relations in groups (which, however, remained unnoticed until the mid-sixties). It revealed a new connection between the ideas of combinatorial topology and combinatorial group theory. It was really new, and must not be confused with,
地板
發(fā)表于 2025-3-22 04:50:29 | 只看該作者
-Maps,aded so that additional properties can be expected only in the case of maps satisfying special conditions. As we shall see, such conditions can hold for diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between rela
5#
發(fā)表于 2025-3-22 09:21:31 | 只看該作者
Relations in Periodic Groups,l formulations of the problem is as follows: is every periodic group with a finite number of generators finite? Under the extra condition of solubility, the answer is positive and quite simple (Corollary 7.1). The answer is also positive for matrix groups over fields (see Burnside [33], Schur [225],
6#
發(fā)表于 2025-3-22 13:36:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:18 | 只看該作者
Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem
8#
發(fā)表于 2025-3-22 22:22:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:03:00 | 只看該作者
Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certa
10#
發(fā)表于 2025-3-23 09:07:36 | 只看該作者
vieweg studium; Aufbaukurs Mathematikn be found in a number of introductory monographs on the theory of groups as well as in many other books on general algebra (such as [256], [114], [123], [126], [128], [201] and [92]). Still, for the convenience of the reader, we found it worthwhile to include all the necessary definitions and conve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 乌兰浩特市| 青铜峡市| 郎溪县| 伊春市| 大港区| 保德县| 蒲城县| 青川县| 百色市| 左贡县| 方正县| 仁化县| 玉田县| 芜湖市| 茌平县| 邵阳市| 辛集市| 九江市| 和林格尔县| 兴海县| 玉山县| 富川| 望城县| 容城县| 修文县| 庆元县| 黔南| 揭阳市| 通道| 大连市| 金阳县| 湟源县| 鄂尔多斯市| 嘉定区| 兴城市| 遵义市| 南平市| 昆明市| 福泉市| 黔西|