找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
11#
發(fā)表于 2025-3-23 10:13:25 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:42:00 | 只看該作者
https://doi.org/10.1007/978-3-322-96725-1aded so that additional properties can be expected only in the case of maps satisfying special conditions. As we shall see, such conditions can hold for diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between rela
14#
發(fā)表于 2025-3-24 01:00:21 | 只看該作者
Modellierung der Lieferkettenresilienz,l formulations of the problem is as follows: is every periodic group with a finite number of generators finite? Under the extra condition of solubility, the answer is positive and quite simple (Corollary 7.1). The answer is also positive for matrix groups over fields (see Burnside [33], Schur [225],
15#
發(fā)表于 2025-3-24 02:53:47 | 只看該作者
,Führungsaufgaben des IT-Managements,f the cells were distinguished as special. Of course, power relations are a very special type of defining relation. Many group properties are connected with relations of a more complicated form. For instance, we considered in §13 a problem that led to relations containing long periodic words separat
16#
發(fā)表于 2025-3-24 09:11:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:00 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:45 | 只看該作者
978-94-010-5605-2Springer Science+Business Media Dordrecht 1991
20#
發(fā)表于 2025-3-25 02:13:22 | 只看該作者
Geometry of Defining Relations in Groups978-94-011-3618-1Series ISSN 0169-6378
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊通| 隆回县| 饶阳县| 北宁市| 文水县| 临清市| 汝城县| 芦山县| 化隆| 日土县| 平塘县| 湘潭市| 大冶市| 台前县| 湖州市| 慈溪市| 清苑县| 利川市| 安远县| 嘉黎县| 平阴县| 武隆县| 化德县| 连云港市| 康马县| 鸡东县| 丹江口市| 重庆市| 全南县| 馆陶县| 广安市| 扎囊县| 桃江县| 屯门区| 永春县| 靖远县| 屯留县| 泽普县| 蒲城县| 彩票| 平凉市|