找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
31#
發(fā)表于 2025-3-26 22:57:35 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:29 | 只看該作者
Extensions of Aspherical Groups,If the quotient group ./. of a group . by a normal subgroup . is isomorphic to a group . then we say that . is an . of . by .. Such an extension is called . if . is an abelian group. If . is in the centre of ., then we say that the extension is ..
34#
發(fā)表于 2025-3-27 13:11:24 | 只看該作者
35#
發(fā)表于 2025-3-27 15:13:04 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:38 | 只看該作者
https://doi.org/10.1007/978-3-322-96725-1or diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between relators. We shall also develop some necessary machinery, whose application yields results as early as the next chapter.
37#
發(fā)表于 2025-3-27 22:18:27 | 只看該作者
38#
發(fā)表于 2025-3-28 05:41:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:59:50 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:43 | 只看該作者
Presentations in Free Products,ing relations needed to define this quotient group. Lyndon [146], [149] formulated an analogue of van Kampen’s lemma for free products and applied it to small cancellation free products. In Chapter 11, we extend the method and the techniques of Chapters 4–10 to diagrams over free products and apply them to quotient groups of free products.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 永嘉县| 米易县| 楚雄市| 湛江市| 孟津县| 天柱县| 九龙县| 桑日县| 河北区| 瑞金市| 和龙市| 临桂县| 蕲春县| 中方县| 泸定县| 潜山县| 太仆寺旗| 沂南县| 信阳市| 邹城市| 罗山县| 犍为县| 青浦区| 定日县| 阜新| 保定市| 治县。| 旬阳县| 绥化市| 彭山县| 宜宾市| 肃北| 大名县| 巴林左旗| 富蕴县| 宁陵县| 临猗县| 桐梓县| 彰化市| 中牟县|