找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
51#
發(fā)表于 2025-3-30 08:36:53 | 只看該作者
Einige physikalisch-chemische Grundlagen?.) is strongly K-stable in the sense of [.], we shall show that the balanced metrics have (BP). In a subsequent paper [.], this property (BP) plays a very important role in the study of the Yau-Tian-Donaldson conjecture for general polarizations.
52#
發(fā)表于 2025-3-30 14:18:34 | 只看該作者
https://doi.org/10.1007/978-3-642-49711-7olds, and show that it gives a coefficient of the divergent term of the mean curvature function. Moreover, we show that the product . called the product curvature (resp. . called normalized product curvature) of . (resp. .) and the limiting normal curvature . is an intrinsic invariant of the surface
53#
發(fā)表于 2025-3-30 19:38:00 | 只看該作者
Einige physikalisch-chemische Grundlagend by . the group of relative symplectomorphisms. There exists a short exact sequence involving with those groups, whose kernel is .. On such a group . one has a celebrated homomorphism called the Calabi invariant. By dividing the exact sequence by the kernel of the Calabi invariant, one obtains a ce
54#
發(fā)表于 2025-3-31 00:04:52 | 只看該作者
55#
發(fā)表于 2025-3-31 04:32:23 | 只看該作者
Grundbegriffe der Informationstheorie,nnections to the K-energy. We will also include proof for certain known results which may not have been well presented or less accessible in the literature. We always assume that . is a compact K?hler manifold. By a polarization, we mean a positive line bundle . over ., then we call (.,?.) a polariz
56#
發(fā)表于 2025-3-31 06:53:36 | 只看該作者
Akito Futaki,Reiko Miyaoka,Weiping ZhangShows recent development in.geometry and topology.Gives access to sophisticated.techniques in geometric analysis.Leads to future directions ofresearch in geometry and topology.Includes supplementary m
57#
發(fā)表于 2025-3-31 09:28:25 | 只看該作者
Geometry and Topology of Manifolds978-4-431-56021-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大埔县| 梅河口市| 瑞丽市| 蓬安县| 札达县| 苏州市| 金昌市| 南宫市| 清流县| 昭觉县| 无极县| 凤城市| 岳池县| 喀喇沁旗| 都昌县| 南漳县| 临清市| 合山市| 那坡县| 周口市| 修水县| 时尚| 千阳县| 临桂县| 丹江口市| 玉林市| 满城县| 阳山县| 冕宁县| 沁水县| 志丹县| 铜梁县| 枣强县| 凤山县| 昌黎县| 胶南市| 道孚县| 珲春市| 西吉县| 钟祥市| 海南省|