找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
41#
發(fā)表于 2025-3-28 18:36:48 | 只看該作者
42#
發(fā)表于 2025-3-28 21:21:40 | 只看該作者
43#
發(fā)表于 2025-3-29 00:43:16 | 只看該作者
Die Mikroprozessoren 8086 und 8088, surfaces especially, such data are holomorphic. We can regard this formula as an analogue (in Contact Riemannian Geometry) of . for minimal surfaces in .. Hence for minimal ones in ., there are many similar results to those for minimal surfaces in .. In particular, we prove a . for . minimal Legend
44#
發(fā)表于 2025-3-29 05:12:17 | 只看該作者
Hilfsmittel zur Programmentwicklung,ilizes the notion of linear stratification on the gluing bundles for the orbifold stratified spaces. We introduce a concept of good gluing structure to ensure a smooth structure on the stratified space. As an application, we provide an orbifold structure on the coarse moduli space . of stable genus
45#
發(fā)表于 2025-3-29 09:25:47 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:35 | 只看該作者
https://doi.org/10.1007/978-3-642-47616-7t is, self-shrinkers of mean curvature flow in Euclidean spaces and examples of compact self-shrinkers are discussed. We also review properties of critical points for weighted area functional for weighted volume-preserving variations, that is, .-hypersurfaces of weighted volume-preserving mean curva
47#
發(fā)表于 2025-3-29 19:14:22 | 只看該作者
48#
發(fā)表于 2025-3-29 20:56:15 | 只看該作者
49#
發(fā)表于 2025-3-30 02:18:31 | 只看該作者
50#
發(fā)表于 2025-3-30 06:36:51 | 只看該作者
Die sediment?re GesteinsbildungWe explain two main ingredients in our work. The first is the adjoint transform of Willmore surfaces introduced by the first author, which generalizes the dual Willmore surface construction. The second is the DPW method applied to Willmore surfaces whose conformal Gauss map is well-known to be a har
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 门头沟区| 广平县| 双鸭山市| 论坛| 镇赉县| 垫江县| 定州市| 石门县| 永登县| 白河县| 乌兰县| 长岭县| 鄂托克前旗| 宣恩县| 邓州市| 济南市| 灵宝市| 闵行区| 泊头市| 青海省| 长岛县| 元朗区| 淅川县| 元谋县| 邵武市| 两当县| 滨海县| 漾濞| 宜兴市| 邻水| 屯留县| 亳州市| 日喀则市| 涡阳县| 土默特左旗| 玉门市| 沙雅县| 城固县| 社会| 含山县|