找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
11#
發(fā)表于 2025-3-23 13:11:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:32:46 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:26 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:11 | 只看該作者
,Applications of the Affine Structures on the Teichmüller Spaces,e. These results answer certain open questions in the subject. A general result about certain period map to be bi-holomorphic from the Hodge metric completion space of the Torelli space of Calabi–Yau type manifolds to their period domains is proved and applied to the cases of K3 surfaces, cubic fourfolds, and hyperk?hler manifolds.
15#
發(fā)表于 2025-3-24 03:35:43 | 只看該作者
Can One Hear the Shape of a Group?,Koji Fujiwara, Journal of Topology and Analysis, .(2), 345–359 (2015). This is a note from my talk on that paper and mainly discuss the connection between Riemannian geometry and group theory, and also some questions.
16#
發(fā)表于 2025-3-24 08:42:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:43:34 | 只看該作者
2194-1009 ofresearch in geometry and topology.Includes supplementary mSince the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many imp
18#
發(fā)表于 2025-3-24 18:08:06 | 只看該作者
,Fixieren und H?rten der Objekte,e. These results answer certain open questions in the subject. A general result about certain period map to be bi-holomorphic from the Hodge metric completion space of the Torelli space of Calabi–Yau type manifolds to their period domains is proved and applied to the cases of K3 surfaces, cubic fourfolds, and hyperk?hler manifolds.
19#
發(fā)表于 2025-3-24 19:40:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:06:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁国市| 西平县| 金川县| 靖西县| 称多县| 巴东县| 东源县| 西华县| 黑河市| 旬邑县| 云霄县| 莫力| 洛扎县| 正阳县| 仁布县| 临安市| 三门县| 宁安市| 枣强县| 朝阳市| 白城市| 甘肃省| 遂溪县| 汕头市| 扬中市| 洪洞县| 乐昌市| 陵川县| 神木县| 临武县| 泉州市| 台北市| 威信县| 五常市| 岳池县| 霍州市| 阿荣旗| 铁力市| 依兰县| 宁海县| 金溪县|