找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions; Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 21310|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:39:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions
編輯Jun Kigami
視頻videohttp://file.papertrans.cn/384/383762/383762.mp4
概述Describes how a compact metric space may be associated with an infinite graph whose boundary is the original space.Explores an approach to metrics and measures from an integrated point of view.Shows a
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions;  Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde
描述.The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: .It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic..Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights..The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of .p.-energies associated with the partition and the weight function corresponding to the metric..?These notes should interest researchers and PhD students
出版日期Book 2020
關(guān)鍵詞Ahlfors Regular Conformal Dimension; Gromov Hyperbolicity; Infinite Graph; Metrics; Partition
版次1
doihttps://doi.org/10.1007/978-3-030-54154-5
isbn_softcover978-3-030-54153-8
isbn_ebook978-3-030-54154-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions影響因子(影響力)




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions影響因子(影響力)學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions網(wǎng)絡(luò)公開(kāi)度




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions被引頻次




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions被引頻次學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions讀者反饋




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:07:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:16 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:49 | 只看該作者
978-3-030-54153-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 09:04:58 | 只看該作者
6#
發(fā)表于 2025-3-22 16:15:22 | 只看該作者
7#
發(fā)表于 2025-3-22 19:37:11 | 只看該作者
https://doi.org/10.1007/978-3-030-54154-5Ahlfors Regular Conformal Dimension; Gromov Hyperbolicity; Infinite Graph; Metrics; Partition
8#
發(fā)表于 2025-3-22 21:32:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:42:08 | 只看該作者
https://doi.org/10.1007/978-3-662-01432-5In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.
10#
發(fā)表于 2025-3-23 07:43:14 | 只看該作者
Einführung in die AutomatentheorieIn this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资中县| 原平市| 灌云县| 临沂市| 宾川县| 得荣县| 普洱| 辰溪县| 萨迦县| 翼城县| 融水| 鄂托克旗| 江永县| 义乌市| 象山县| 南昌市| 大冶市| 建湖县| 奇台县| 渭南市| 丰顺县| 鹤壁市| 建水县| 平邑县| 尉氏县| 凭祥市| 永登县| 射阳县| 乡城县| 宣恩县| 黄龙县| 新晃| 余江县| 林芝县| 杂多县| 武陟县| 黄石市| 醴陵市| 金乡县| 阜城县| 沂源县|