找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions; Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 21315|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:39:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions
編輯Jun Kigami
視頻videohttp://file.papertrans.cn/384/383762/383762.mp4
概述Describes how a compact metric space may be associated with an infinite graph whose boundary is the original space.Explores an approach to metrics and measures from an integrated point of view.Shows a
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions;  Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde
描述.The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: .It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic..Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights..The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of .p.-energies associated with the partition and the weight function corresponding to the metric..?These notes should interest researchers and PhD students
出版日期Book 2020
關(guān)鍵詞Ahlfors Regular Conformal Dimension; Gromov Hyperbolicity; Infinite Graph; Metrics; Partition
版次1
doihttps://doi.org/10.1007/978-3-030-54154-5
isbn_softcover978-3-030-54153-8
isbn_ebook978-3-030-54154-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions影響因子(影響力)




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions影響因子(影響力)學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions網(wǎng)絡(luò)公開度




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions被引頻次




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions被引頻次學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions年度引用學(xué)科排名




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions讀者反饋




書目名稱Geometry and Analysis of Metric Spaces via Weighted Partitions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:07:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:16 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:49 | 只看該作者
978-3-030-54153-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 09:04:58 | 只看該作者
6#
發(fā)表于 2025-3-22 16:15:22 | 只看該作者
7#
發(fā)表于 2025-3-22 19:37:11 | 只看該作者
https://doi.org/10.1007/978-3-030-54154-5Ahlfors Regular Conformal Dimension; Gromov Hyperbolicity; Infinite Graph; Metrics; Partition
8#
發(fā)表于 2025-3-22 21:32:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:42:08 | 只看該作者
https://doi.org/10.1007/978-3-662-01432-5In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.
10#
發(fā)表于 2025-3-23 07:43:14 | 只看該作者
Einführung in die AutomatentheorieIn this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄梅县| 凤翔县| 壶关县| 昌都县| 宝山区| 武平县| 洛隆县| 平谷区| 富宁县| 柳江县| 桐柏县| 通山县| 前郭尔| 岳普湖县| 乌拉特后旗| 泌阳县| 崇左市| 工布江达县| 孙吴县| 来安县| 松江区| 文山县| 双桥区| 陈巴尔虎旗| 旌德县| 勃利县| 宁阳县| 美姑县| 宝坻区| 东丰县| 黑山县| 大足县| 密山市| 嵊泗县| 彭泽县| 韶关市| 达州市| 澄江县| 甘谷县| 碌曲县| 浠水县|