找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Metric Spaces via Weighted Partitions; Jun Kigami Book 2020 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 愚蠢地活
11#
發(fā)表于 2025-3-23 13:39:30 | 只看該作者
Partitions, Weight Functions and Their Hyperbolicity,In this section, we review basic notions and notations on a tree with a reference point.
12#
發(fā)表于 2025-3-23 13:56:00 | 只看該作者
Relations of Weight Functions,In this section, we define the notion of bi-Lipschitz equivalence of weight functions. Originally the definition, Definition 3.1.1, only concerns the tree structure . and has nothing to do with a partition of a space.
13#
發(fā)表于 2025-3-23 20:58:56 | 只看該作者
Characterization of Ahlfors Regular Conformal Dimension,In this section, we present a sufficient condition for the existence of an adapted metric to a given weight function. The sufficient condition obtained in this section will be used to construct an Ahlfors regular metric later.
14#
發(fā)表于 2025-3-23 23:58:28 | 只看該作者
15#
發(fā)表于 2025-3-24 02:53:51 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:22:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:56:58 | 只看該作者
Book 2020 iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the
19#
發(fā)表于 2025-3-24 22:03:33 | 只看該作者
Introduction and a Showcase,nit interval [0, 1] shown in Fig. 1.1. Let ..?=?[0, 1] and divide .. in half as . and .. Next, .. and .. are divided in half again and yield .. for each (., .)?∈{0, 1}.. Repeating this procedure, we obtain . satisfying . for any .?≥?0 and ..…..?∈{0, 1}.. In this example, there are two notable proper
20#
發(fā)表于 2025-3-25 00:03:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三都| 响水县| 来宾市| 平舆县| 禄丰县| 湾仔区| 邢台市| 陵水| 尼勒克县| 海兴县| 肃南| 郑州市| 合山市| 宜良县| 隆昌县| 铅山县| 临汾市| 普格县| 大厂| 襄樊市| 永春县| 都安| 扶绥县| 图木舒克市| 灵山县| 旌德县| 麻江县| 敦化市| 石林| 邢台县| 四子王旗| 德令哈市| 平潭县| 延津县| 哈巴河县| 临漳县| 福海县| 吉林市| 深圳市| 宁远县| 通海县|