找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries and Groups; Proceedings of the W M. Aschbacher,A. M. Cohen,W. M. Kantor Conference proceedings 1988 D. Reidel Publishing Company

[復(fù)制鏈接]
樓主: 縮寫
31#
發(fā)表于 2025-3-26 21:26:57 | 只看該作者
32#
發(fā)表于 2025-3-27 04:36:46 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:00:26 | 只看該作者
35#
發(fā)表于 2025-3-27 14:15:23 | 只看該作者
§ 2 Die Ehe als Gegenstand von Rechtsnormenre occurency, if the rank of the building is at least three. This is part of a theorem by Kantor, Liebler and Tits. In the cases where such a subgroup exists, one has always p = 2 or 3 and constructions of the exceptional groups can be found in [4], [5], [6], [7], [8] and [12]. Many (if not all) of
36#
發(fā)表于 2025-3-27 18:20:00 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:08 | 只看該作者
Eichgebührenordnung vom 24. Mai 1924ed point group G = $$ { ext{G=}}{overline { ext{G}} _{sigma }} $$ is finite and quasisimple. Write G = G(q), with q = p. and let V be an irreducible, but not necessarily absolutely irreducible, kG-module, where k denotes K or a finite subfield of K.
39#
發(fā)表于 2025-3-28 08:08:49 | 只看該作者
https://doi.org/10.1007/978-3-642-59128-01] for classical groups and algebras of rank at most 4. These results were produced by computer programs developed in connection with [3], where the main result required information beyond the tables in [1]. In view of the utility of the tables in [1], it seemed worthwhile to provide tables for grou
40#
發(fā)表于 2025-3-28 13:58:50 | 只看該作者
https://doi.org/10.1007/978-3-662-34029-5e groups, and more generally descriptions of the groups of Lie type over arbitrary fields. The representation of the alternating group of degree n as the group of automorphisms of a set of order n is an excellent example of such a description. The representation of the classical groups as the isomet
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会昌县| 凤凰县| 吴忠市| 射阳县| 游戏| 波密县| 黄冈市| 南城县| 田林县| 石首市| 土默特右旗| 十堰市| 泰州市| 桂平市| 遵义市| 晋城| 南通市| 丰县| 泸西县| 寿宁县| 蓬莱市| 富川| 佛教| 泰兴市| 天柱县| 沙河市| 黔江区| 色达县| 宿州市| 河池市| 前郭尔| 罗城| 柘城县| 连山| 铁岭市| 信宜市| 昌邑市| 裕民县| 林西县| 安义县| 布拖县|