找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries and Groups; Proceedings of the W M. Aschbacher,A. M. Cohen,W. M. Kantor Conference proceedings 1988 D. Reidel Publishing Company

[復(fù)制鏈接]
樓主: 縮寫
41#
發(fā)表于 2025-3-28 16:48:36 | 只看該作者
42#
發(fā)表于 2025-3-28 21:40:41 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:41 | 只看該作者
Conference proceedings 1988h were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks
44#
發(fā)表于 2025-3-29 05:46:21 | 只看該作者
ed research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list
45#
發(fā)表于 2025-3-29 09:42:51 | 只看該作者
46#
發(fā)表于 2025-3-29 15:25:00 | 只看該作者
Ehe als privilegierte soziale Beziehung,me of the results, are concerned with quotients of affine buildings over locally compact local fields. The purpose of this note is two-fold: to discuss many of the known examples from a somewhat new point of view (§2), and to describe a characterization theorem due jointly to Liebler, Tits and myself (§3).
47#
發(fā)表于 2025-3-29 17:54:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:33:04 | 只看該作者
49#
發(fā)表于 2025-3-30 03:38:30 | 只看該作者
https://doi.org/10.1007/978-3-662-34029-5the group of automorphisms of a set of order n is an excellent example of such a description. The representation of the classical groups as the isometry groups of bilinear or sequilinear forms is another.
50#
發(fā)表于 2025-3-30 04:44:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 张家口市| 呈贡县| 井冈山市| 岢岚县| 沐川县| 衡阳县| 江安县| 宣化县| 南投市| 清原| 昭觉县| 长治市| 广南县| 巴楚县| 郸城县| 盘山县| 镇坪县| 乐平市| 永昌县| 广平县| 凭祥市| 泰和县| 乌兰浩特市| 峨山| 博兴县| 宝兴县| 岳西县| 夏邑县| 澄城县| 凉山| 克什克腾旗| 靖安县| 如皋市| 鄱阳县| 邵东县| 方正县| 屏南县| 江陵县| 仪陇县| 林芝县|