找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries and Groups; Proceedings of the W M. Aschbacher,A. M. Cohen,W. M. Kantor Conference proceedings 1988 D. Reidel Publishing Company

[復制鏈接]
樓主: 縮寫
41#
發(fā)表于 2025-3-28 16:48:36 | 只看該作者
42#
發(fā)表于 2025-3-28 21:40:41 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:41 | 只看該作者
Conference proceedings 1988h were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks
44#
發(fā)表于 2025-3-29 05:46:21 | 只看該作者
ed research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list
45#
發(fā)表于 2025-3-29 09:42:51 | 只看該作者
46#
發(fā)表于 2025-3-29 15:25:00 | 只看該作者
Ehe als privilegierte soziale Beziehung,me of the results, are concerned with quotients of affine buildings over locally compact local fields. The purpose of this note is two-fold: to discuss many of the known examples from a somewhat new point of view (§2), and to describe a characterization theorem due jointly to Liebler, Tits and myself (§3).
47#
發(fā)表于 2025-3-29 17:54:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:33:04 | 只看該作者
49#
發(fā)表于 2025-3-30 03:38:30 | 只看該作者
https://doi.org/10.1007/978-3-662-34029-5the group of automorphisms of a set of order n is an excellent example of such a description. The representation of the classical groups as the isometry groups of bilinear or sequilinear forms is another.
50#
發(fā)表于 2025-3-30 04:44:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南宁市| 遵化市| 鸡东县| 互助| 海城市| 隆回县| 资兴市| 潼南县| 阿拉善左旗| 额敏县| 武清区| 普定县| 应用必备| 运城市| 温泉县| 丰顺县| 沙河市| 丰城市| 邵东县| 天峻县| 河津市| 寻甸| 深州市| 双柏县| 茂名市| 申扎县| 平度市| 宜都市| 昭觉县| 靖边县| 鲜城| 云林县| 宽城| 平遥县| 尚义县| 康平县| 林口县| 长治市| 会东县| 鹤岗市| 邯郸市|