找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometries and Groups; Proceedings of the W M. Aschbacher,A. M. Cohen,W. M. Kantor Conference proceedings 1988 D. Reidel Publishing Company

[復制鏈接]
樓主: 縮寫
41#
發(fā)表于 2025-3-28 16:48:36 | 只看該作者
42#
發(fā)表于 2025-3-28 21:40:41 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:41 | 只看該作者
Conference proceedings 1988h were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks
44#
發(fā)表于 2025-3-29 05:46:21 | 只看該作者
ed research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list
45#
發(fā)表于 2025-3-29 09:42:51 | 只看該作者
46#
發(fā)表于 2025-3-29 15:25:00 | 只看該作者
Ehe als privilegierte soziale Beziehung,me of the results, are concerned with quotients of affine buildings over locally compact local fields. The purpose of this note is two-fold: to discuss many of the known examples from a somewhat new point of view (§2), and to describe a characterization theorem due jointly to Liebler, Tits and myself (§3).
47#
發(fā)表于 2025-3-29 17:54:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:33:04 | 只看該作者
49#
發(fā)表于 2025-3-30 03:38:30 | 只看該作者
https://doi.org/10.1007/978-3-662-34029-5the group of automorphisms of a set of order n is an excellent example of such a description. The representation of the classical groups as the isometry groups of bilinear or sequilinear forms is another.
50#
發(fā)表于 2025-3-30 04:44:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
邻水| 奉化市| 太湖县| 寻乌县| 五寨县| 古浪县| 鄂伦春自治旗| 保康县| 罗定市| 潞西市| 华坪县| 阿坝县| 菏泽市| 弋阳县| 灌云县| 屏东县| 西畴县| 施甸县| 湘阴县| 南投县| 驻马店市| 沙田区| 思南县| 濉溪县| 留坝县| 清徐县| 伊吾县| 哈尔滨市| 保靖县| 会泽县| 泰宁县| 新兴县| 红河县| 绥德县| 美姑县| 慈利县| 宁阳县| 威远县| 昌都县| 湘潭市| 辽阳市|