找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復制鏈接]
樓主: dejected
41#
發(fā)表于 2025-3-28 18:00:23 | 只看該作者
The Medial Patellofemoral Ligament approximating fixed points of operators belonging to subclasses of these classes of nonlinear mappings and defined in appropriate Banach spaces have been flourishing areas of research for many mathematicians. For the classes of mappings mentioned here in (.) to (.), we show in this chapter that mod
42#
發(fā)表于 2025-3-28 18:48:38 | 只看該作者
43#
發(fā)表于 2025-3-29 02:19:58 | 只看該作者
44#
發(fā)表于 2025-3-29 04:23:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:49:43 | 只看該作者
https://doi.org/10.1007/978-1-84882-190-345XX; 46XX; 47XX; 49XX; 65XX; 68XX; Convexity; Families of operators; Hammerstein equations; Iterative method
46#
發(fā)表于 2025-3-29 11:33:54 | 只看該作者
Charles ChidumeSelf-contained, with detailed motivations, explanations and examples.In-depth, comprehensive and up-to-date coverage.Contains interesting, important and reasonable open problems.Summaries of key inequ
47#
發(fā)表于 2025-3-29 17:22:41 | 只看該作者
Implementing an Auditing Program,r product, ?.,.?. In this chapter, we present the notion of . which will provide us with a pairing between elements of a normed space . and elements of its dual space .*, which we shall also denote by ?.,.? and will serve as a suitable analogue of the inner product in Hilbert spaces.
48#
發(fā)表于 2025-3-29 20:57:57 | 只看該作者
49#
發(fā)表于 2025-3-30 01:28:15 | 只看該作者
50#
發(fā)表于 2025-3-30 04:14:08 | 只看該作者
Generalized Lipschitz Pseudo-contractive and Accretive Mappings,lized Lipschitz accretive operators (assuming exis tence). These classes of mappings have been defined in Chapter 12. Fur thermore, the iteration scheme introduced here and the method of proof are of independent interest.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石台县| 绩溪县| 曲沃县| 富顺县| 罗山县| 新建县| 克拉玛依市| 永修县| 新兴县| 浮梁县| 岐山县| 陕西省| 平远县| 福清市| 陈巴尔虎旗| 广饶县| 涞水县| 乐业县| 临沭县| 兰坪| 万载县| 青浦区| 修武县| 喀喇沁旗| 临汾市| 白银市| 平原县| 读书| 上虞市| 凯里市| 宝应县| 洱源县| 阿勒泰市| 佛山市| 金沙县| 桐城市| 双流县| 德庆县| 玉门市| 弥勒县| 河曲县|