找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
21#
發(fā)表于 2025-3-25 05:28:48 | 只看該作者
22#
發(fā)表于 2025-3-25 11:33:17 | 只看該作者
V. T. Anju,Siddhardha Busi,Madhu DyavaiahLet (.) be a metric space and . be a nonempty subset of .. For every .?., the distance between the point . and . is denoted by ρ(.) and is defined by the following minimum problem:.The . (also called the .) . defined on . is a mapping from . to 2. such that..
23#
發(fā)表于 2025-3-25 15:39:24 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:40 | 只看該作者
Revision Anterior Cruciate Ligament,In this chapter, we shall examine iterative methods for approximating solu tions of important nonlinear integral equations involving accretive-type op erators. In particular, we examine iteration methods for solving ..
25#
發(fā)表于 2025-3-25 23:45:30 | 只看該作者
,Einführung in die Sto?wellenphysik,In this chapter, we present an iteration process which has been studied for approximating common fixed points for families of . nonexpansive mappings defined on a . convex subset of a Banach space..We first prove the following lemmas which are connected with real num bers.
26#
發(fā)表于 2025-3-26 01:09:34 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:14 | 只看該作者
28#
發(fā)表于 2025-3-26 12:17:13 | 只看該作者
Inequalities in Uniformly Smooth Spaces,In this chapter, we obtain analogues of the identities (1.1) and (1.2) in smooth spaces. We begin with the following definitions.
29#
發(fā)表于 2025-3-26 15:35:45 | 只看該作者
Iterative Method for Fixed Points of Nonexpansive Mappings,We begin this chapter with the following well known definition and theorem.
30#
發(fā)表于 2025-3-26 17:45:28 | 只看該作者
Hybrid Steepest Descent Method for Variational Inequalities,Let (.) be a metric space and . be a nonempty subset of .. For every .?., the distance between the point . and . is denoted by ρ(.) and is defined by the following minimum problem:.The . (also called the .) . defined on . is a mapping from . to 2. such that..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
体育| 广昌县| 大关县| 独山县| 旺苍县| 靖州| 仙居县| 沙洋县| 湖北省| 达州市| 北海市| 和政县| 思南县| 尉犁县| 琼海市| 淮南市| 汶上县| 临泽县| 宜都市| 个旧市| 吉隆县| 安丘市| 名山县| 北宁市| 东海县| 阿荣旗| 原阳县| 松阳县| 双峰县| 富阳市| 邓州市| 外汇| 十堰市| 西林县| 堆龙德庆县| 平乡县| 仁化县| 蓬莱市| 分宜县| 滕州市| 连城县|