找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復制鏈接]
查看: 6252|回復: 58
樓主
發(fā)表于 2025-3-21 19:46:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations
編輯Charles Chidume
視頻videohttp://file.papertrans.cn/384/383597/383597.mp4
概述Self-contained, with detailed motivations, explanations and examples.In-depth, comprehensive and up-to-date coverage.Contains interesting, important and reasonable open problems.Summaries of key inequ
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations;  Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.
描述The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “...
出版日期Book 2009
關鍵詞45XX; 46XX; 47XX; 49XX; 65XX; 68XX; Convexity; Families of operators; Hammerstein equations; Iterative method
版次1
doihttps://doi.org/10.1007/978-1-84882-190-3
isbn_softcover978-1-84882-189-7
isbn_ebook978-1-84882-190-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag London 2009
The information of publication is updating

書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations影響因子(影響力)




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations影響因子(影響力)學科排名




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations網(wǎng)絡公開度




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations網(wǎng)絡公開度學科排名




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations被引頻次




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations被引頻次學科排名




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations年度引用




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations年度引用學科排名




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations讀者反饋




書目名稱Geometric Properties of Banach Spaces and Nonlinear Iterations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:59:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:41:23 | 只看該作者
Combined Analog Digital Integration: CANDI. : . → . is Lipschitz, then, by Schauder fixed point theorem, . has a fixed point in .. All efforts to approximate such a fixed point by means of the Mann sequence when . is also assumed to be pseudo-contractive proved abortive. In 1974, Ishikawa introduced a new iteration scheme and proved the following theorem.
地板
發(fā)表于 2025-3-22 05:44:01 | 只看該作者
Arthroscopic Capsulolabral Repair,re general than Hilbert spaces. However, two other iteration methods have been introduced and have successfully been employed to approximate fixed points of Lipschitz pseudo-contractive mappings in certain Banach spaces ..
5#
發(fā)表于 2025-3-22 09:28:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:29:55 | 只看該作者
The Medial Patellofemoral Ligamentbeen flourishing areas of research for many mathematicians. For the classes of mappings mentioned here in (.) to (.), we show in this chapter that modifications of the Mann iteration algorithm and of the Halpern-type iteration process studied in chapter 6 can be used to approximate fixed points (when they exist).
7#
發(fā)表于 2025-3-22 17:20:56 | 只看該作者
Basic Concepts in Hip Arthroscopy,lt of Markov is more general than this but this version is adequate for our purposes)..Motivated by this result, De Marr studied the problem of the existence of a common fixed point for a family of . maps, and proved the following theorem.
8#
發(fā)表于 2025-3-22 23:05:51 | 只看該作者
Some Geometric Properties of Banach Spaces,pter 2, we shall introduce the class of .. All the results presented in these two chapters are well-known and standard and can be found in several books on geometry of Banach spaces, for example, in Diestel [206], or in Lindenstrauss and Tzafriri [312]. Consequently, we shall skip some details and long proofs.
9#
發(fā)表于 2025-3-23 01:39:16 | 只看該作者
10#
發(fā)表于 2025-3-23 06:41:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
枣强县| 成安县| 南和县| 沁源县| 宝山区| 元谋县| 西吉县| 屏南县| 漯河市| 德保县| 开阳县| 社旗县| 玉环县| 满洲里市| 临澧县| 罗城| 赣州市| 荔浦县| 雷山县| 乌什县| 堆龙德庆县| 墨脱县| 乌什县| 连云港市| 大姚县| 成安县| 确山县| 昔阳县| 太康县| 青神县| 鸡西市| 宜宾县| 墨玉县| 白沙| 和顺县| 崇礼县| 白河县| 九龙城区| 安达市| 海盐县| 酉阳|