找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
11#
發(fā)表于 2025-3-23 12:51:39 | 只看該作者
Generalized Lipschitz Accretive and Pseudo-contractive Mappings,class of Lipschitz mappings and the class of mappings with bounded range is that of .. In this chapter, by means of an iteration process introduced by Chidume and Ofoedu [152], we prove con vergence theorems for fixed points of . Lipschitz pseudo-contractive mappings in real Banach spaces.
12#
發(fā)表于 2025-3-23 17:17:26 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:11:50 | 只看該作者
Book 2009his area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric pro
15#
發(fā)表于 2025-3-24 04:31:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:23:06 | 只看該作者
Common Fixed Points for Countable Families of Nonexpansive Mappings,ences are proved for . families of nonexpansive mappings defined in Hilbert spaces..Convergence theorems have also been proved for common fixed points of countable . families of nonexpansive mappings. Before we proceed, we first state the following important theorem.
17#
發(fā)表于 2025-3-24 11:12:26 | 只看該作者
978-1-84882-189-7Springer-Verlag London 2009
18#
發(fā)表于 2025-3-24 17:41:27 | 只看該作者
Geometric Properties of Banach Spaces and Nonlinear Iterations978-1-84882-190-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 21:22:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚州市| 台前县| 乡城县| 临桂县| 灵丘县| 巴塘县| 临洮县| 武陟县| 惠安县| 六枝特区| 泰州市| 台湾省| 宣恩县| 南安市| 鄂托克前旗| 海南省| 门源| 古蔺县| 封丘县| 夏河县| 镇宁| 寻乌县| 栾城县| 堆龙德庆县| 博乐市| 石楼县| 罗江县| 勐海县| 华阴市| 西林县| 房产| 庆云县| 玉林市| 区。| 忻州市| 朔州市| 论坛| 喀喇沁旗| 武陟县| 新丰县| 新河县|