找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復(fù)制鏈接]
樓主: sprawl
21#
發(fā)表于 2025-3-25 04:50:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:03 | 只看該作者
Deformation Quantization of Commutative Families and Vector FieldsWe describe a series of cohomological obstructions for the deformation of involutive families of functions on a Poisson manifold and for the deformation of Poisson vector fields acting on it.
23#
發(fā)表于 2025-3-25 15:26:29 | 只看該作者
On the quantum flag manifold SUq(3)/T2The structure of the C *-algebra of functions on the quantum flag manifold SUq(3)/T2 is investigated. Building on the representation theory of C ( SUq(3) ) , we analyze irreducible representations and the primitive ideal space of C ( SUq(3)/T2) , with a view towards unearthing the “quantum sphere bundle” CP1 q → SUq(3)/T2 → CP2 q .
24#
發(fā)表于 2025-3-25 19:11:14 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:49 | 只看該作者
Hopf–Rinow theorem in Grassmann manifolds of ,-algebrasWe survey several results on the problem of finding a geodesic of minimal length joining two given endpoints in Grassmann manifolds of .- algebras.
26#
發(fā)表于 2025-3-26 02:52:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:48:18 | 只看該作者
Cultural Keywords in Philippine English. The internal symmetry of the problem makes it possible to reduce the dimension of the problem using the symplectic-quotient theory. The phase-space is constructed from the orbits of (co)adjoint representation of the general linear group. The presented parametrisation of the quotientspace is based
28#
發(fā)表于 2025-3-26 10:10:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:55 | 只看該作者
Elisabeth Remy,Brigitte Mossé,Denis Thieffrytors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
30#
發(fā)表于 2025-3-26 20:33:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙阴县| 长春市| 新巴尔虎右旗| 东港市| 上高县| 建宁县| 资兴市| 汾阳市| 织金县| 阳朔县| 乌恰县| 乌拉特后旗| 临澧县| 大渡口区| 荆州市| 黄山市| 高平市| 合水县| 班玛县| 庆阳市| 岳阳县| 北票市| 南木林县| 礼泉县| 永川市| 肥城市| 清徐县| 游戏| 治多县| 桦甸市| 襄城县| 白朗县| 大同县| 博爱县| 华亭县| 巴中市| 连南| 化德县| 襄城县| 潮安县| 石门县|