找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復制鏈接]
樓主: sprawl
31#
發(fā)表于 2025-3-27 00:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:05:35 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:13 | 只看該作者
Giovanni Bianchi,Werner Schiehlencal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
34#
發(fā)表于 2025-3-27 11:15:25 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:15 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:24 | 只看該作者
Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Spacetors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
37#
發(fā)表于 2025-3-28 01:05:46 | 只看該作者
Notes on integrable motion of two interacting curves and two-layer generalized Heisenberg ferromagnery of curves is established. Using this relation we found the geometrical equivalent counterpart of the two-layer spin system which is the two-component KdV equation. Finally, the gauge equivalence between these equations is established.
38#
發(fā)表于 2025-3-28 04:53:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:16:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:25:01 | 只看該作者
Co-Toeplitz Quantization: A Simple Casecal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汉源县| 行唐县| 成武县| 沅江市| 洪湖市| 富宁县| 金坛市| 廉江市| 格尔木市| 苍山县| 普定县| 祁东县| 个旧市| 玉山县| 康平县| 鲁甸县| 香格里拉县| 筠连县| 惠安县| 宁城县| 白沙| 南岸区| 甘南县| 南川市| 杭锦旗| 六安市| 南江县| 景洪市| 淳化县| 巴林左旗| 洛宁县| 吉隆县| 巩留县| 兴城市| 新田县| 敦化市| 湖南省| 白朗县| 万源市| 项城市| 义马市|